
BU CAS CS 112 A1. Spring 2007. 1

CAS CS 112 A1. Assignment 7
Due 11:59pm on Wednesday, May 2, 2007

In this assignment you will implement a program the solves the puzzle called “Doublets” proposed
by Lewis Carroll in the English weekly Vanity Fair 1 (no relation to modern American Vanity Fair).
The puzzle itself was announced in the paper as follows:

1Vanity Fair, vol. XXI, no. 543, 29 March 1879, pp. 185–186

BU CAS CS 112 A1. Spring 2007. 2

BU CAS CS 112 A1. Spring 2007. 3

During the first few weeks of the competition administered by Vanity Fair, there was much debate
on its pages about which words are acceptable—for instance, whether words such as “spank” and
“hell” were words that “might be used in good society.” Ultimately, Lewis Carroll published a
glossary of acceptable words. Unfortunately, I was unable to find a typed-up version of it; therefore,
we will stick to using the same Scrabble word list as for assignment 6. This makes it easier to find
links, as the word list is quite a bit larger than Carroll’s dictionary (and, in particular, contains the
words “spank” and “hell”).

The approach you will take is as follows. First, construct an (undirected) graph of all the words
in the dictionary, with an edge between two words if and only if they differ in exactly one character.
Do so by reading in one word at a time, and figuring out all of its edges to the previously read words,
and all of their edges to it. Store the graph as an array of vertices, with each vertex storing a linked
list of its neighbors. Use the fact that the words are already sorted in the dictionary: this makes
searching for neighbors easy with binary search; moreover, you know that the word you read in is
alphabetically after all the words that have already been added to the graph, which helps cut down
the search.

After the graph is constructed, searching for the shortest chain given a doublet is a matter of
finding the vertices corresponding to two words in the doublet, and then running a breadth-first-
search. You will have to implement the breadth-first search method to do so; the method should
return the stack of nodes representing the chain. Be sure to include proper clean-up at the end of
your breadth-first search: clear the “visited” flag of every node that had it set, in order to prepare
for the next breadth-first search.

This is likely your most complicated programming project so far; we provide a good deal of code
to start you off, but there is still a lot to do. We provide two files: Doublets.java (which you should
not need to modify) and WordGraph.java (which is mostly a skeleton). Read and understand them
before proceeding. All the code you write should be added to WordGraph.java; you probably won’t
need to create any other files.

In the end, you should get the following for sample input and output:

BU CAS CS 112 A1. Spring 2007. 4

Current directory: C:\leo\teaching\s07cs112a\code\hw

Words read so far:

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

110000 120000 130000 140000 150000 160000 170000

Please enter the start word, or "***" to quit: pig

Please enter the end word: sty

pig

zig

zag

sag

say

sty

Please enter the start word, or "***" to quit: four

Please enter the end word: five

four

tour

torr

tore

tire

fire

five

Please enter the start word, or "***" to quit: wheat

Please enter the end word: bread

wheat

cheat

cleat

bleat

bleak

break

bread

Please enter the start word, or "***" to quit: computer

Please enter the end word: sciences

No path exists.

Please enter the start word, or "***" to quit: ***

BU CAS CS 112 A1. Spring 2007. 5

Optional, not for credit, only if you have time. When you add each word, you will have to
perform a binary search for all of its one-letter-substituted variations. You can speed up that search
if you search for the variation in alphabetical order, make your binary search method return the
insertion point location whether or not the variation was found, and start off the search for the next
variation at that location rather than at the beginning of the array. To make binary search do this
and yet at the same time tell you whether the variation was found or not, the trick is to have it return
the usual index of the variation if the variation was found, and the value (−insertion point− 1) if
it wasn’t, where insertion point is the location where you would insert the variation in the array if
you were to place it there. In my implementation, this sped up graph construction by about a factor
of 2. I provide a javadoc for this optional binary search in BetterBinSearch.java.

You can also speed up loading by having separate instances of the graph class for each word
length, and adding each word to the appropriate instance.

You could also try to study the graph. Interesting questions to ask include the following. How
many connected components, and of what sizes, at each length? What is the average degree? What
is the maximum degree? How many words have no neighbors at all?

How to submit. Put all your Java code in a package edu.bu.cs112.students.your username.hw7

and submit the java files: Doublets.java, WordGraph.java, and any other java files if you end up
having to create them.

