CAS CS 112 — Spring 2008, Assignment 6
due at 10:00 pm on Thursday, May 1

In this assignment we will investigate a real network using some of the techniques we
discussed in class. Our network comes from biology: the vertices are Yeast proteins and
the edges are physical interactions. You can read more about protein-protein interactions
(PPIs) here: http://en.wikipedia.org/wiki/Protein-protein_interaction. Our
task will be to use some simple techniques to find the “important” vertices (proteins) in
the network. Typically, this is referred to as measuring the “centrality” of each vertex in
the graph: http://en.wikipedia.org/wiki/Centrality.

Building the graph

(20 Points) You will be provided a network.txt file which contains the network data in
edge-list format. Each line specifies a (tab-delimited) pair (a,b) which corresponds to an
interaction between a and b. The network.txt file gives an undirected connected graph.
If edge (a,b) is specified, so is (b,a), and there are no duplicate edges. The network is
very sparse, so we will be using an adjacency list representation to store it. In Java, a
convenient way to represent a network is with the following data structure:

HashMap<String,HashSet<String>>

where each vertex (represented by its name in the form of a String) is mapped to the set
of its neighbors.

Your first task is to read in the network.txt file line by line and add the corresponding
edges to your graph representation. You will find it convenient to use the String.split()
method to split each line into two Strings on the tab character.

Ranking vertices by degree

(10 points) The simplest way to determine the importance of a vertex is by its degree.
For example, in a social interaction network the person who knows the most people may

http://en.wikipedia.org/wiki/Protein-protein_interaction
http://en.wikipedia.org/wiki/Centrality

be important (but of course that is not always the case). Using our graph representation,
it is very easy to determine the degree of each vertex (just get the size of its neighbor set).
Produce a list of vertices sorted by decreasing degree in a file called degreeRanking.txt,
where each line contains the name of the vertex and its degree. Here for simplicity it is
okay to use a slower (O(n?)) sort.

You should notice that most vertices have very low degree, but there is still a con-
siderable number of vertices with high degree. These high degree vertices are typically
called hubs.

Ranking vertices by clustering coefficient

(30 Points) Another (better) way to determine the importance of a vertex is by considering
how dense its immediate neighborhood is. One way to measure this is by considering
what fraction of its neighbors are connected. This metric is known as the clustering
coefficient. Formally, for undirected graph G' = (V, E), define the neighbor set of v; € V|
denoted by N,., to be the set of vertices connected to v;:

N,, ={v;} :e;; € E.

Then the clustering coefficient of v;, denoted by C'C(v;), is the fraction of vertex pairs in
N,, that share an edge:

[{ejr}]
CC(UZ) = <|val|) : Uj,'l)k € Nvi,ejk c FE.
2
Compute the clustering coefficient of each node, and again produce a sorted list (in

the same format as before, sorted by decreasing clustering coefficient) in a file called
clusteringRanking.txt.

Ranking vertices by betweenness

(40 Points) Finally, you will use another centrality metric to rank the proteins. Intuitively,
a vertex which is central in a network is traversed on a lot of shortest paths. This
is precisely what betweenness measures: for vertex v it gives the number of shortest

paths that v occurs on (not including paths from and to v of course). You can see that
n—1

the betweenness score of each node should range from 0 to (5

of vertices.

Your task is to compute the betweenness of each vertex and produce a sorted list (as
before) in a file called betweennessRanking.txt. To calculate a betweenness score for
each vertex do the following: implement a breadth-first search and each time you run
it (you will need to run it from every vertex) trace every shortest path back using the
predecessor information, incrementing the counters for the vertices that you encounter.
You can use a HashMap to implement the counters. Of course, don’t increment the
counters for the last and first vertex on the path. You can use another HashMap to keep
track of predecessors when you run your breadth-first search.

), where n is the number

Helpful Hints

You can use the following code to iterate over the set of Map entries (useful for accessing
each vertex and the set of its neighbors):

Iterator it = map.entrySet().iterator();
while(it.hasNext()){
Map.Entry entry = (Map.Entry) it.next();
String vertex = (String) entry.getKey();
HashSet neighbors = (HashSet) entry.getValue();
}

(1))

Also, given vertex “v” you can use the enhanced for-loop to access all of its neighbors:

HashSet neighbors = map.get("v");
for(String n : neighbors)
System.out.println("v is connected to " + n);

In each part of the assignment you need to assign every vertex a value (degree, clus-
tering coefficient, betweenness) and then produce a sorted list based on those values. A
simple way to accomplish this is to make a Map (containing <vertex, value> pairs) for
each ranking and then write a function which takes a Map and prints a sorted list. It
is acceptable for your sorting function to just iterate over the Map n times, where n
is the initial size of the Map, and each time print and remove the <vertex,value> pair
containing the largest value.

Submissions

Submit the three files degreeRanking.txt, clusteringRanking.txt, and between-
nessRanking.txt, along with all your code. Put your code in two files: GraphTool-
box.java, which contains the object that stores the graph as a private data member,
and all the other functionality that you need, and GraphClient.java, which creates a
GraphToolbox object and calls its methods to complete the assignment.

A note about the rankings

You may be curious about what the rankings that you produce are useful for. Ranking
proteins in terms of importance based on PPI data is a well-studied problem in bioin-
formatics. One way to determine the quality of a computationally derived ranking is by
doing an experiment such as a gene knockout. A gene (protein) is knocked out and it
is observed whether the organism survives or not, if it does not it is labeled a synthetic
lethal. Naturally, a ranking which lists the synthetic lethals first is preferred. It turns
out that clustering coefficient is the best computational predictor of lethality, followed
by betweenness and degree. Of course, other methods which rank vertices (based on the
adjacency matrix or the transition probability matrix of the graph) are also applicable
here, but in general for the results to be believable one needs to argue about the quality
of the interaction data first.

