CAS CS 112 — Spring 2008, Assignment 3
due at 10:00 pm on Thursday, February 28

In this assignment you will write a programmable calculator. The calculator will have
an assign function which takes a variable name and an assignment: either an integer
or postfix expression. The calculator will also have an evaluate function which takes a

postfix expression and converts it into an integer, and then returns that integer. Postfix

expressions will consist of single character variables, arithmetic operations (+ , -, * |

/), and integers between 0 and 9 inclusive. You can see example use of the calculator
below.

Calculator ¢ = new Calculator();

c.assign(“x=5");

c.assign(“y=x7+");

int first = c.evaluate(“xy*”);

c.assign(“z=57*");

c.assign(“x=x8+y *7);

int sec = c.evaluate(“xy+");

int third = c.evaluate(“z”);

//This code will set first to 60, then it will set sec to 168, and third to 35.

Linked list

(25 Points) You will create a linked list data structure to store variables. The linked list
will consist of variable nodes; these will contain the variable name as a char and its value
as an int. Students should create this structure in a separate class named VList.

Iterator

(10 points) VList should implement the Iterable interface. Feel free to use your Iterator
when looking up the values of variables.



Stack

(25 Points) You will create a stack to evaluate postfix expressions. The stack will be
completely dynamic, that is the underlying data structure will be a linked list. You
should only need one stack to perform an evaluation. The stack should also be its own
class named CStack.

Calculator

(30 Points) Finally, you will create a calculator class named Calculator which contains
a constructor and two public methods void assign(string assgnmnt) and int evalu-
ate(string expr) as described above.

Handling bad input

(10 points) If your calculator encounters a malformed postfix expression or an undefined
variable, it must throw a malformedPostfixException or undefined VariableExcep-
tion, respectively. We will show you how to define your own exceptions by extending the
Exception class in lab.

Submissions

Please submit all files necessary for compilation, including the files named above and any
additional files that you used. You do not need to submit a test file or a main method.



