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ABSTRACT

Clustering and network analysis are important areas of research in Computer Science and

other disciplines. Clustering is broadly defined as finding sets of similar objects. It has many

applications, such as finding groups of similar buyers given their product preferences, and finding

groups of similar proteins given their sequences. Network analysis considers data represented by

a collection of nodes (vertices), and edges that link these nodes. The structure of the network

is studied to find central nodes, identify nodes that are similar to a particular vertex, and find

well-connected groups of vertices. The World Wide Web and online social networks are some

of the best studied networks today. Network analysis can also be applied to biological networks

where nodes are proteins and edges represent relationships or interactions between them.

The size of real-world data sets presents many challenges to computational techniques that

interpret them. A classic clustering problem is to divide the data set into groups, given the

pairwise distances between the objects. However, computing all the pairwise distances may

be infeasible if the data set is very large. In this thesis we consider clustering in a limited

information setting where we do not know the distances between the objects in advance, and

instead must query them during the execution of the algorithm. We present algorithms that

find an accurate clustering in this setting using few queries.

The networks that we encounter in practice are quite large as well, making computations on

the entire network difficult. In this thesis we present techniques for locally exploring networks,

which are efficient but still give meaningful information about the local structure of the graph.

We develop several tools for locally exploring a network, and show that they give meaningful
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results when applied to protein networks.
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Chapter 1

Introduction

Designing computational techniques that work effectively on real-world data sets is challenging

for several reasons. It is difficult to theoretically model all the characteristics of particular

data sets, and the models that we create often involve assumptions that may not be true in

practice. A lot of computational methods are also designed with no particular application in

mind, and it is hard to expect them to work well on different kinds of data. Moreover, validating

new methods is difficult because relevant data sets often lack a solid ground truth to compare

against, and otherwise only miniature or outdated data sets are available.

This thesis presents new algorithms and tools with specific applications in the field of com-

putational biology. It concerns both the development of algorithms and their validation on

relevant data sets. Chapters 2 and 3 present novel clustering algorithms that work with limited

distance information, and their application to clustering protein sequences. Our one versus

all distance query models a sequence database search program such as BLAST (Basic Local

Alignment Search Tool), which quickly compares a single sequence against an entire database of

sequences. BLAST is used ubiquitously in boinformatics, and is known to produce very mean-

ingful results. Our accuracy analysis involves theoretic assumptions about the approximation

stability of different objective functions for clustering. We explicitly test these assumptions on

protein sequence data, which clarifies whether we should expect our techniques to perform well.

We also validate the performance of our methods using gold-standard classifications of protein

evolutionary relatedness.

Chapter 4 of this thesis presents our tools for network analysis. While the algorithms that

our tools implement are not designed specifically for biological networks, we conduct thorough

experimental studies to show that they give meaningful results in protein networks. Unlike social

networks, where for relevant data sets a ground truth is often built from implicit assumptions

and weak associations, the proteins of model organisms such as yeast are very well-known, which

gives us a solid ground truth for validation purposes. For the protein networks in our studies



2

we have access to a gold-standard listing of functional units, as well as a manually curated

classification of the proteins, which we can use to derive meaningful functional distances. We

can therefore evaluate how effective our techniques are at finding functionally related proteins.

The first part of this thesis concerns clustering in the limited information setting. Traditional

algorithms require all pairwise distances between the objects as input, which may be difficult

to obtain if the data set is very large. In practice computing all pairwise distances between

the objects may take orders of magnitude more time than computing the actual clustering.

Motivated by this observation, in this thesis we develop clustering algorithms that operate with

limited distance information; in particular we consider clustering with a small number of one

versus all queries. A one versus all query returns the distances between a specified point and

all other points in the data set. We show that if the clustering instance has a certain structure,

then O(k) and O(k log k) one versus all queries is enough to produce an accurate clustering,

where k is the number of clusters in the data.

In order to analyze the correctness of our algorithms we assume that the distance function

is a metric, and that the clustering instance satisfies a natural approximation stability property

of Balcan, Blum, and Gupta [BBG09] with respect to different objective functions for clus-

tering. Balcan et al. assume that there is some relevant target clustering CT , and optimizing

a particular objective function for clustering (such as k-median or min-sum) gives clusterings

that are structurally close to CT . More precisely, the (c, ε) approximation stability property

of Balcan et al. assumes that any c-approximation of the objective is ε-close to CT , where

the distance between two clusterings is the fraction of misclassified points under the optimum

matching between the two sets of clusters. If this is true, instead of optimizing the objective

function we can focus directly on finding a clustering that is structurally close to CT .

Indeed, Balcan et al. show that given the (c, ε)-property we can efficiently find clusterings

that are ε-close to CT even when finding a c-approximation is very difficult [BBG09]. These

approximation stability assumptions have also been recently studied by Awasthi, Blum, and

Sheffet [ABS10], who have improved some of the results of Balcan et al. We extend the work

of Balcan et al. by showing that given these assumptions it is still possible to find accurate

clusterings while querying only some of the distances between the points. Moreover, we develop
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algorithms that are more efficient, and show their practical use by applying them to relevant

problems in computational biology.

The second part of this thesis presents our techniques for exploring networks. Instead of

modeling data as a set of points with a pairwise distance function, we can often represent it

as a network: a collection of nodes (vertices) and edges linking these nodes. We can then

use the network topology to find out more about the nodes and the relationships between

them. For social networks a centrality measure known as Alpha-Centrality has been proposed,

which considers the number of paths between the nodes in the graph [Kat53, Bon87, BL01].

This centrality measure can be used to evaluate the influence of each node. Another approach

to measure the importance of nodes in a network is the famous PageRank algorithm, which

considers a random walk on the Web graph to rank pages by their importance [PBMW98,

BP98]. The structure of the Web graph has also been used to classify Web pages as hubs

and authorities [Kle98], and to find communities (clusters) of related pages [GKR98, KRRT99,

FLGC02]. Community detection is also well-studied in the context of social networks [New04,

GN02, PDFV05, Cla05].

In order to investigate a network, we can use two kinds of algorithms that differ in whether

or not they consider the entire graph. A global algorithm performs a computation on the entire

network, while a local algorithm only considers a small part of the graph close to a given vertex.

A local algorithm may be much faster, but can still give meaningful information about the local

structure of the network. The local clustering algorithms of Spielman and Teng [ST08], and

Andersen, Chung, and Lang [ACL06] provably find high-quality clusters and have a runtime

that is proportional to the size of the found cluster. The ApproximatePR algorithm, which is

a subroutine of the algorithm of Andersen et al., finds the closest neighbors of a given vertex

by computing an approximate personalized PageRank vector 1. The runtime of this algorithm

is proportional to the size of the neighborhood that is explored.

The same network analysis techniques used on social networks and the Web graph can also

be applied to biological networks. Clusters are especially relevant in protein networks because
1A personalized PageRank vector generally refers to a PageRank vector with a non-uniform starting vector,

but here we only consider starting vectors that are non-zero in exactly one entry. We use the same terminology
for Alpha-Centrality vectors.
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they often represent protein complexes or other modules with related function. There have

been many studies that cluster protein-protein interaction (PPI) networks [KCY+06, BH03,

SM03, CY06, KPJ04, BCM+03, VW09], all of which use some global algorithm. In this thesis

we use local clustering techniques to find communities in protein networks. We build a tool

that uses the algorithms of Spielman and Teng [ST08], and Andersen et al. [ACL06] to find a

high-quality community near a given vertex in a network specified by the user. Our tool works

very quickly on protein networks that are currently available, and easily scales to much larger

networks. We conduct a thorough study in which we investigate the quality of the communities

found by our local algorithms and compare them with other methods.

We also develop a measure of closeness in protein networks that uses personalized PageRank.

We define the PageRank Affinity of two proteins a and b to be the minimum of pr(a → b) and

pr(b → a), where pr(a → b) is the amount of PageRank that b has in the personalized PageRank

vector of a, which is proportional to the number of times b is visited in a random walk on the

network that restarts at a. We perform a thorough study that shows that this measure of

closeness is very effective at inferring functional ties between proteins. Based on our measure

we build a tool that quickly finds nodes closest to a queried vertex in a network specified by the

user, which uses the ApproximatePR algorithm of Andersen et al. [ACL06] as a subroutine.

In this thesis we also present a novel technique for locally exploring a graph that uses

approximate personalized Alpha-Centrality vectors. We develop an algorithm to approximate

Alpha-Centrality, and give its proof of correctness. Our Approximate-Centrality algorithm

has only a single parameter that controls both the runtime and the quality of the produced

approximation. We show that just like PageRank, Alpha-Centrality with personalized starting

vectors can be used to measure the closeness of nodes in a network. Therefore we can use our

algorithm to approximate a personalized Alpha-Centrality vector in order to find the closest

neighbors of a given node. Our Approximate-Centrality algorithm will only explore a small part

of the graph close to the starting vertex (based on the choice of the approximation parameter).

We also give some intuition for when Alpha-Centrality may be more meaningful than PageRank.
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1.1 Contribution

In this section we briefly summarize our contributions, which are as follows.

• In Chapter 2 we describe our Landmark-Clustering algorithm, which given the (c, ε)-

property for the k-median objective function finds a clustering that is ε-close to the target

by using only O(k) one versus all queries. We use the same assumptions as Balcan, Blum,

and Gupta [BBG09], and we obtain the same performance guarantees, but by only using

a very small number of one versus all queries. In addition to handling this more difficult

scenario, we also provide a much faster algorithm. The algorithm of Balcan et al. can be

implemented in O(n3) time, while the one proposed here runs in time O(nk log n).

• In Chapter 3 we describe the Landmark-Clustering-Min-Sum algorithm, which given the

(c, ε)-property for the min-sum objective function finds a clustering that is close to the

target by using only O(k log k) one versus all queries. If the approximation stability

property is satisfied for the min-sum objective, the structure of the clustering instance is

quite different, and the algorithm given in Chapter 2 fails to find an accurate clustering

in such cases. The min-sum objective is also considerably harder to approximate.

• We apply these algorithms to cluster proteins by sequence similarity using BLAST (Ba-

sic Local Alignment Search Tool) as the one versus all distance query, and compare our

results to gold-standard manual classifications given in the Pfam [FMT+10] and SCOP

[MBHC95] databases. We find that for one of these sources we obtain clusterings that

usually closely match the given classification, and for the other the performance of our

algorithms is comparable to that of the best known algorithms using the full distance

matrix. Both of these classification databases have limited coverage, so completely au-

tomated methods such as ours can be useful in clustering proteins that have yet to be

classified. Moreover, our methods can cluster very large data sets because they are ef-

ficient and do not require the full distance matrix as input, which may be infeasible to

obtain for a very large data set.

• In Chapter 4 we present our tool for finding high-quality local communities in a large
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network. Our application quickly finds a community close to a queried vertex in any

network constructed from a large repository of protein interaction data or manually input

by the user, and easily scales to very large networks. Our tool uses the local clustering

algorithms Nibble [ST08] and PageRank-Nibble [ACL06], which find a cluster by exploring

only a part of the graph close to the starting vertex. The quality of a cluster is measured

by the ratio of the number of its outgoing edges to the sum of the degrees of its nodes,

known as conductance [SJ89]. We perform an experimental study that compares the

techniques that our tool uses to other partitioning algorithms. We show that among the

algorithms considered, Nibble finds better clusters in terms of conductance and functional

coherence.

• In Chapter 4 we present an approach to evaluate pairwise closeness in networks using

personalized PageRank. We conduct a rigorous study of protein networks that shows that

PageRank Affinity is more biologically meaningful than other commonly used measures of

closeness in terms of predicting co-complex membership and correlation with functional

distance. Based on our method we build a tool that quickly finds nodes closest to a

queried vertex in a network input by the user.

• In Chapter 4 we describe an algorithm that approximates Alpha-Centrality, and give

its proof of correctness. We show that Alpha-Centrality with personalized starting vec-

tors can also be used to measure the closeness of nodes in a network. We can use our

Approximate-Centrality algorithm to locally explore a graph by computing an approxi-

mate personalized Alpha-Centrality vector. We also give some intuition for when close-

ness based on personalized Alpha-Centrality is likely to give more meaningful results than

PageRank Affinity.

1.2 Related Work

We next give a brief overview of the related work. Section 1.2.1 lists other clustering algorithms

that use sampling, and describes similar techniques for choosing an initial set of points for

clustering. Section 1.2.2 lists other graph partitioning algorithms, applications of PageRank,

and efforts to measure closeness of nodes in protein networks.
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1.2.1 Clustering with Limited Distance Information

Approximate clustering using sampling has been studied extensively in recent years [MOP01,

BD07, CS07]. The methods proposed in these papers yield constant factor approximations

to the k-median objective with high probability using O(k) one versus all distance queries.

However, these approximation algorithms may not be relevant given our approximation stability

assumptions. The constant factor of these approximations is at least 2, therefore the proposed

sampling methods do not necessarily yield clusterings close to the target clustering CT if the

(c, ε) approximation stability property holds only for some small constant c < 2, which is the

interesting case in our setting.

A property that is related to (c, ε) is ε-separability, introduced by Ostrovsky, Rabani, Schul-

man, and Swamy [ORSS06]. A clustering instance is ε-separated if the cost of the optimal

k-clustering is at most ε2 times the cost of the optimal clustering using k − 1 clusters. This

property is satisfied if we have chosen k well, because it is common practice to choose the num-

ber of clusters by incrementing k until the cost of the clustering stops (significantly) decreasing.

The ε-separability and (c, ε) properties are related: in the case when the clusters are large the

Ostrovsky et al. condition implies the Balcan et al. condition (see [BBG09]).

Ostrovsky et al. also present a sampling method for choosing initial centers that is similar

to the one used in Landmark-Clustering. When followed by a single Lloyd-type descent step,

their technique gives a constant factor approximation of the k-means objective if the instance

is ε-separated. However, their sampling method needs information about the full distance

matrix because the probability of picking two points as two cluster centers is proportional to

their squared distance. A very similar (independently proposed) strategy is used by Arthur

and Vassilvitskii to obtain an O(log k)-approximation of the k-means objective on arbitrary

instances [AV07]. Their work was further extended by Ailon, Jaiswal, and Monteleoni to give

a constant factor approximation using O(k log k) centers [AJM09]. The latter two algorithms

can be implemented with k and O(k log k) one versus all distance queries, respectively.

Awasthi, Blum, and Sheffet [ABS10] have since improved the approximation guarantee of

Ostrovsky et al. and some of the results of Balcan et al. In particular, they show a way

to arbitrarily closely approximate the k-median and k-means objective when the Balcan et
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al. condition is satisfied and all the target clusters are large. In their analysis they use a

property called weak deletion-stability, which is implied by the Ostrovsky et al. condition

and the Balcan et al. condition when the target clusters are large. However, in order to

find a c-approximation (and given our assumption a clustering that is ε-close to the target)

the runtime of their algorithm is nO(1/(c−1)2)kO(1/(c−1)). On the other hand, the runtime of

our Landmark-Clustering algorithm is completely independent of c, so it remains efficient even

when the (c, ε)-property holds only for some very small constant c.

Our landmark selection strategy is related to the farthest first traversal used by Dasgupta

[Das02]. In each iteration this traversal selects the point that is farthest from the ones chosen

so far, where distance from a point s to a set X is given by minx∈Xd(s, x). This traversal

was originally used by Gonzalez to give a 2-approximation to the k-center problem [Gon85].

It is used by Dasgupta to produce a hierarchical clustering where for each k the induced k-

clustering is a constant factor approximation of the optimal k-center clustering [Das02]. Our

selection strategy is somewhat different from farthest first traversal because in each iteration

we uniformly at random choose one of the furthest points from the ones selected so far. In

addition, the theoretical guarantees we provide are quite different from those of Gonzales and

Dasgupta.

1.2.2 Network Analysis

Graph partitioning is often used to find clusters in a network. This approach seeks to divide

the nodes of the network into clusters such that there are many within-cluster edges but few

between-cluster edges. Spectral methods partition the graph by using the eigenvectors of the

adjacency or Laplacian matrices of the graph [MS01, KVV00, HK92, ST07, Kel06, BLR08,

AKY99b, AKY99a]. Metis is another effective graph partitioning algorithm. It is very efficient

and works better than commonly used spectral clustering methods in terms of the size of the

resulting edge cut [AK06].

PageRank with personalized starting vectors was introduced by Haveliwala [Hav03], and has

been used for context-sensitive search on the Web [FR04, JW03]. PageRank has also been used

for biological applications [MBHG05], and personalized PageRank has been applied to protein
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networks by Can et al. [CcS05] and Chipman and Singh [CS09].

There has been considerable work done in evaluating pairwise closeness in PPI networks.

Measures of interconnectedness between protein pairs have been used to find functionally similar

proteins [YH07, CSW06, OKA05, SL03]. Different notions of interconnectedness have also been

used to predict false negative interactions in protein networks [GR03]. All of these measures

consider the density of the interactions in the immediate neighborhood of two proteins, and

some also normalize by the number of interactions of each protein, or the number of interactions

in the neighborhood expected by chance.

A problem that is related to evaluating the closeness of two proteins in a PPI network is

finding the closest neighbors of a set of proteins. This is addressed by Li and Horvath [LH07]

by generalizing pairwise notions of interconnectedness, and by Can et al. [CcS05] by using

personalized PageRank. A similar problem is considered in the context of probabilistic PPI

networks, where reachability [AKGR04] and shortest path distance [HZRB07] in instantiated

networks are used to recover protein complexes when only some of their proteins are known.



10

Chapter 2

Clustering with Limited Distance Information

Clustering from pairwise distance information is a well-studied problem with many applications.

Traditional clustering algorithms require all pairwise distances between the points as input,

which may be infeasible to compute in practice. Here we consider clustering in a limited

information setting. We assume that the distances between the points are not given in advance,

and must be queried during the execution of the algorithm. Our objective is to find an accurate

clustering using few queries.

We can imagine at least two different ways to query distances between points. One way is

to ask for distances between pairs of points, and the other is to ask for distances between one

point and all other points. Clearly, a one versus all query can be implemented as n pairwise

queries, where n is the size of the data set, but we draw a distinction between the two because

the former is often significantly faster in practice if the query is implemented as a database

search.

Our main motivating example for considering one versus all distance queries is sequence

similarity search in biology. A program such as BLAST [AGM+90] (Basic Local Alignment

Search Tool) is optimized to search a single sequence against an entire database of sequences.

On the other hand, performing n pairwise sequence alignments takes several orders of magnitude

more time, even if the pairwise alignment is very fast. The disparity in runtime is due to the

hashing that BLAST uses to identify regions of similarity between the input sequence and

sequences in the database. The program maintains a hash table of all words in the database

(substrings of a certain length), linking each word to its locations. When a query is performed,

BLAST considers each word in the input sequence, and runs a local sequence alignment in

each of its locations in the database. Therefore the program only performs a limited number

of local sequence alignments, rather than aligning the input sequence to each sequence in the

database. Of course, the downside is that we never consider alignments between sequences that

do not share a word. However, in this case an alignment may not be relevant anyway, and we
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can assign a distance of infinity to the two sequences. Even though the search performed by

BLAST is heuristic, it has been shown that protein sequence similarity identified by BLAST is

meaningful [BCH98].

Motivated by such scenarios, we consider the problem of clustering a data set with an

unknown distance function, given only the capability to ask one versus all distance queries. We

design efficient algorithms for clustering accurately with a small number of such queries. We

analyze the accuracy of our algorithms in the framework of Balcan, Blum and Gupta [BBG09],

which assumes that the clustering instance satisfies an approximation stability property with

respect to some objective function for clustering. In particular, we consider approximation

stability with respect to the k-median and min-sum objective functions. For the k-median

objective we give an algorithm that finds an accurate clustering using a number of queries that

is linear in the number of clusters.

This chapter is organized as follows. In Section 2.1 we formally define our problem, the

k-median objective function, and the (c, ε) approximation stability property of Balcan, Blum,

and Gupta. We also introduce some notation that is used in the analysis of our algorithm.

Section 2.2 gives a high-level description of our Landmark-Clustering algorithm and states a

theorem about its correctness. The analysis of our algorithm and its proof of correctness is given

in Section 2.3. An efficient implementation of our procedure is given in Section 2.4. Finally,

Section 2.5 describes the application of our algorithm to clustering protein sequences. We also

include a discussion on setting the parameters of our procedure, and testing the approximation

stability assumption on protein sequence data sets.

2.1 Approximation Stability of the k-median Objective Function

Given a metric space M = (X, d) with point set X, an unknown distance function d satisfying

the triangle inequality, and a set of points S ⊆ X, we would like to find a k-clustering C that

partitions the points in S into k sets C1, . . . , Ck by using one versus all distance queries.

In our analysis we assume that S satisfies the (c, ε)-property of [BBG09] for the k-median

objective function. The k-median objective is to minimize Φ(C) =
∑k

i=1

∑
x∈Ci

d(x, ci), where

ci is the median of cluster Ci, which is the point y ∈ Ci that minimizes
∑

x∈Ci
d(x, y). Let
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OPTΦ = minC Φ(C), where the minimum is over all k-clusterings of S, and denote by C∗ =

{C∗
1 , . . . , C∗

k} a clustering achieving this value.

To formalize the (c, ε)-property we need to define a notion of distance between two k-

clusterings C = {C1, . . . , Ck} and C ′ = {C ′
1, . . . , C

′
k}. As in [BBG09], we define the distance

between C and C ′ as the fraction of points on which they disagree under the optimal matching

of clusters in C to clusters in C ′:

dist(C,C ′) = min
σ∈Sk

1
n

k∑
i=1

|Ci − C ′
σ(i)|,

where Sk is the set of bijections σ : {1, . . . , k} → {1, . . . , k}. Two clusterings C and C ′ are

ε-close if dist(C,C ′) < ε.

We assume that there exists some unknown “target” clustering CT and given a proposed

clustering C we define the error of C with respect to CT as dist(C,CT ). Our goal is to find a

clustering of low error.

For any objective function Ω we use OPTΩ to denote its optimum objective value. The

(c, ε) approximation stability property is defined as follows.

Definition 2.1. We say that the instance (S, d) satisfies the (c, ε)-property for objective function
Ω with respect to the target clustering CT if any clustering of S that approximates OPTΩ within
a factor of c is ε-close to CT , that is, Ω(C) ≤ c ·OPTΩ ⇒ dist(C,CT ) < ε.

Here we assume that the clustering instance satisfies the (c, ε)-property for the k-median

objective function. In the analysis of the next section we denote by c∗i the center point of C∗
i ,

and use OPT to refer to the value of C∗ using the k-median objective, that is, OPT = Φ(C∗).

We define the weight of point x to be the contribution of x to the k-median objective in C∗:

w(x) = mini d(x, c∗i ). Similarly, we use w2(x) to denote x’s distance to the second-closest

cluster center among {c∗1, c∗2, . . . , c∗k}. In addition, let w be the average weight of the points:

w = 1
n

∑
x∈S w(x) = OPT

n , where n is the cardinality of S.
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2.2 Landmark-Clustering

Algorithm 2.1 Landmark-Clustering(S, α, ε, δ, k)
b = (1 + 17/α)εn;
q = 2b;
iter = 4k + 16 ln 1

δ ;
smin = b + 1;
n′ = n− b;
L = Landmark-Selection(q, iter);
C ′ = Expand-Landmarks (smin, n

′, L);
Choose some landmark li from each cluster C ′

i;
for each x ∈ S do

Insert x into the cluster C ′′
j for j = argminid(x, li);

end for
return C ′′;

In this section we present a new algorithm that accurately clusters a set of points assuming

that the clustering instance satisfies the (c, ε)-property for c = 1 + α, and the clusters in the

target clustering CT are not too small. The algorithm presented here is much faster than the

one given by Balcan, Blum, and Gupta [BBG09] and does not require all pairwise distances as

input. Instead, we only require O(k + ln 1
δ ) one versus all distance queries to achieve the same

performance guarantee as in [BBG09] with probability 1− δ.

Our clustering method is described in Algorithm 2.1. We start by using the Landmark-

Selection procedure to select a small set of landmarks. This procedure repeatedly chooses

uniformly at random one of the q furthest points from the ones selected so far, for an appropriate

q. We use dmin(s) to refer to the minimum distance between s and any point selected so far.

Each time we select a new landmark l, we use a one versus all distance query to get the distances

between l and all other points in the data set, and update dmin(s) for each point s ∈ S. To

select a new landmark in each iteration, we choose a random number i ∈ {n − q + 1, . . . , n}

and use a linear time selection algorithm to select the ith furthest point. We note that our

algorithm only uses the distances between landmarks and other points to produce a clustering.
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Algorithm 2.2 Landmark-Selection(q, iter)
Choose l ∈ S uniformly at random;
L = {l};
for each d(l, s) ∈ QUERY-ONE-VS-ALL(l, S) do

dmin(s) = d(l, s);
end for
for i = 1 to iter− 1 do

Let s1, ..., sn be an ordering of the points in S such that dmin(si) ≤ dmin(si+1) for i ∈
{1, . . . , n− 1};
Choose l ∈ {sn−q+1, . . . , sn} uniformly at random;
L = L ∪ {l};
for each d(l, s) ∈ QUERY-ONE-VS-ALL(l, S) do

if d(l, s) < dmin(s) then
dmin(s) = d(l, s);

end if
end for

end for
return L;

Expand-Landmarks then expands a ball Bl around each landmark l ∈ L chosen by Landmark-

Selection. We use the variable r to denote the radius of all the balls: Bl = {s ∈ S | d(s, l) ≤ r}

for all l ∈ L. The algorithm starts with r = 0, and increments it until the balls satisfy a

property described below. For each Bl there are n relevant values of r to try, each adding one

more point to Bl, which results in at most |L|n values to try in total.

The algorithm maintains a graph GB = (VB, EB), where vertices correspond to balls that

have at least smin points in them, and two vertices are connected by an (undirected) edge if

the corresponding balls overlap on any point: (vl1 , vl2) ∈ EB iff Bl1 ∩ Bl2 6= ∅. In addition,

we maintain the set of points in these balls Clustered = {s ∈ S | ∃l : s ∈ Bl} and a list of the

connected components of GB, which we refer to as Components(GB) = {Comp1, ...,Compm}.

In each iteration, after we expand one of the balls by a point, we update GB,Components(GB),

and Clustered. If GB has exactly k components, and |Clustered| ≥ n′, we terminate and report

points in balls that are part of the same component in GB as distinct clusters. If this condition

is never satisfied, we report no-cluster. A sketch of the algorithm is given below. We use

(l∗, s∗) to refer to the next landmark-point pair that is considered, corresponding to expanding
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Figure 2.1: Balls around landmarks are displayed, with the next point to be
added to a ball labeled as s∗.

Bl∗ to include s∗ (Figure 2.1).

Algorithm 2.3 Expand-Landmarks(smin, n
′, L)

1: while ((l∗, s∗) = Expand-Ball()) != null do
2: r = d(l∗, s∗);
3: update GB, Components(GB), and Clustered
4: if |Components(GB)| = k and |Clustered| ≥ n′ then
5: return C = {C1, ..., Ck} where Ci = {s ∈ S | ∃l : s ∈ Bl and vl ∈ Compi}.
6: end if
7: end while
8: return no-cluster;

The last step of our algorithm takes the clustering C ′ returned by Expand-Landmarks and

improves it. We compute a set L′ that contains exactly one landmark from each cluster C ′
i ∈ C ′

(any landmark is sufficient), and assign each point x ∈ S to the cluster corresponding to the

closest landmark in L′.

We now present our main theoretical guarantee for Algorithm 2.1.

Theorem 2.2. Given a metric space M = (X, d), where d is unknown, and a set of points S,
if the instance (S, d) satisfies the (1 + α, ε)-property for the k-median objective function and if
each cluster in the target clustering CT has size at least (4+51/α)εn, then Landmark-Clustering
outputs a clustering that is ε-close to CT with probability 1− δ in time O((k + ln 1

δ )|S| log |S|)
using O(k + ln 1

δ ) one versus all distance queries.
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2.3 Algorithm Analysis

Before we prove the theorem, we will introduce some notation and use an analysis similar to

the one in [BBG09] to argue about the structure of the clustering instance that follows from

our approximation stability assumption.

2.3.1 Structure of the Clustering Instance

Let ε∗ = dist(CT , C∗). By our assumption that the k-median clustering of S satisfies the

(1 + α, ε)-property we have ε∗ < ε. Since each cluster in the target clustering has at least

(4 + 51/α)εn points, and the optimal k-median clustering C∗ differs from the target clustering

by ε∗n ≤ εn points, each cluster in C∗ must have at least (3 + 51/α)εn points.

Let us define the critical distance dcrit = αw
17ε . We call a point x good if both w(x) < dcrit

and w2(x)−w(x) ≥ 17dcrit, else x is called bad. In other words, the good points are those points

that are close to their own cluster center and far from any other cluster center. In addition, we

will break up the good points into good sets Xi, where Xi is the set of the good points in the

optimal cluster C∗
i . So each set Xi is the “core” of the optimal cluster C∗

i .

Note that the distance between two points x, y ∈ Xi satisfies d(x, y) ≤ d(x, c∗i ) + d(c∗i , y) =

w(x) + w(y) < 2dcrit. In addition, the distance between any two points in different good

sets is greater than 16dcrit. To see this, consider a pair of points x ∈ Xi and y ∈ Xj 6=i.

The distance from x to y’s cluster center c∗j is at least 17dcrit. By the triangle inequality,

d(x, y) ≥ d(x, c∗j )− d(y, c∗j ) > 17dcrit − dcrit = 16dcrit.

If the k-median instance (M,S) satisfies the (1 + α, ε)-property with respect to CT , and

each cluster in CT has size at least 2εn, then

1. less than (ε− ε∗)n points x ∈ S on which CT and C∗ agree have w2(x)− w(x) < αw
ε .

2. at most 17εn/α points x ∈ S have w(x) ≥ αw
17ε .

The first part is proved by [BBG09]. The intuition is that if too many points on which

CT and C∗ agree are close enough to the second-closest center among {c∗1, c∗2, . . . , c∗k}, then we

can move them to the clusters corresponding to those centers, producing a clustering that is
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far from CT , but whose objective value is close to OPT, violating the (1 + α, ε)-property. The

second part follows from the fact that
∑

x∈S w(x) = OPT = wn.

Then using these facts it follows that at most ε∗n + (ε − ε∗)n + 17εn/α = εn + 17εn/α =

(1 + 17/α)εn = b points are bad. Hence each |Xi| = |C∗
i \B| ≥ (2 + 34/α)εn = 2b.

In the remainder of this section we prove that given this structure of the clustering instance,

Landmark-Clustering finds an accurate clustering. We first show that almost surely the set of

landmarks returned by Landmark-Selection has the property that each of the cluster cores has

a landmark near it. We then argue that given a set of landmarks with this property, Expand-

Landmarks finds a partition C ′ that clusters most of the points in each core correctly. We

conclude with the proof of the theorem, which argues that the clustering returned by the last

step of our procedure is a further improved clustering that is very close to C∗ and CT .

2.3.2 Proof of Theorem 2.2

The Landmark-Clustering algorithm first uses Landmark-Selection(q, iter) to choose a set of

landmark points. The following lemma proves that for an appropriate choice of q after selecting

only iter = O(k + ln 1
δ ) landmarks with probability at least 1 − δ there is a landmark closer

than 2dcrit to some point in each good set.

Lemma 2.3. Given L = Landmark-Selection (2b, 4k + 16 ln 1
δ ), with probability at least 1 − δ

there is a landmark closer than 2dcrit to some point in each good set.

Proof. Because there are at most b bad points and in each iteration we uniformly at random
choose one of 2b points, the probability that a good point is added to L is at least 1/2 in
each iteration. Using a Chernoff bound we show that the probability that fewer than k good
points have been added to L after t > 2k iterations is less than e−t(1− 2k

t
)2/4 (Lemma 2.4). For

t = 4k + 16 ln 1
δ

e−t(1− 2k
t

)2/4 < e−(4k+16 ln 1
δ
)0.52/4 < e−16 ln 1

δ
/16 = δ.

Therefore after t = 4k + 16 ln 1
δ iterations this probability is smaller than δ.

We argue that once we select k good points using our procedure, one of them must be closer
than 2dcrit to some point in each good set. Note that the selected good points must be distinct
because we must have chosen at least k good points after b+k iterations and we cannot choose
the same point twice in the first n−2b iterations. There are two possibilities regarding the first
k good points added to L: they are either selected from distinct good sets, or at least two of
them are selected from the same good set.
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If the former is true then the statement trivially holds. If the latter is true, consider the first
time that a second point is chosen from the same good set Xi. Let us call these two points x and
y, and assume that y is chosen after x. The distance between x and y must be less than 2dcrit

because they are in the same good set. Therefore when y is chosen, minl∈L d(l, y) ≤ d(x, y) <

2dcrit. Moreover, y is chosen from {sn−2b+1, ..., sn}, where minl∈L d(l, si) ≤ minl∈L d(l, si+1).
Therefore when y is chosen, at least n−2b+1 points s ∈ S (including y) satisfy minl∈L d(l, s) ≤
minl∈L d(l, y) < 2dcrit. Since each good set satisfies |Xi| ≥ 2b, it follows that there must be a
landmark closer than 2dcrit to some point in each good set.

Lemma 2.4. The probability that fewer than k good points have been chosen as landmarks after
t > 2k iterations of Landmark-Selection is less than e−t(1− 2k

t
)2/4.

Proof. Let Xi be an indicator random variable defined as follows: Xi = 1 if point chosen in
iteration i is a good point, and 0 otherwise. Let X =

∑t
i=1 Xi, and µ be the expectation of X.

In other words, X is the number of good points chosen after t iterations of the algorithm, and
µ is its expected value.

Because in each round we uniformly at random choose one of 2b points and there are at
most b bad points in total, E[Xi] ≥ 1/2 and hence µ ≥ t/2. By the Chernoff bound, for any
δ > 0, Pr[X < (1− δ)µ] < e−µδ2/2.

If we set δ = 1− 2k
t , we have (1− δ)µ = (1− (1− 2k

t ))µ ≥ (1− (1− 2k
t ))t/2 = k. Assuming

that t > 2k, it follows that Pr[X < k] ≤ Pr[X < (1 − δ)µ] < e−µδ2/2 = e−µ(1− 2k
t

)2/2 ≤
e−t/2(1− 2k

t
)2/2.

The algorithm then uses the Expand-Landmarks procedure to find a k-clustering C ′. The

following lemma states that C ′ is an accurate clustering, and has an additional property that

is relevant for the last part of the algorithm.

Lemma 2.5. Given a set of landmarks L chosen by Landmark-Selection so that the con-
dition in Lemma 2.3 is satisfied, Expand-Landmarks(b + 1, n − b, L) returns a k-clustering
C ′ = {C ′

1, C
′
2, . . . C

′
k} in which each cluster contains points from a distinct good set Xi. If we

let σ be a bijection mapping each good set Xi to the cluster C ′
σ(i) containing points from Xi, the

distance between c∗i and any landmark l in C ′
σ(i) satisfies d(c∗i , l) < 5dcrit.

Proof. Lemma 2.6 argues that since the good sets Xi are well-separated, for r < 4dcrit no ball
of radius r can overlap more than one Xi, and two balls that overlap different Xi cannot share
any points. Moreover, since we only consider balls that have more than b points in them, and
the number of bad points is at most b, each ball in GB must overlap some good set. Lemma 2.7
argues that since there is a landmark near each good set, there is a value of r∗ < 4dcrit such
that each Xi is contained in some ball around a landmark of radius r∗. We can use these facts
to argue for the correctness of the algorithm.
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Figure 2.2: Balls Bi and Bj of radius r∗ are shown, which contain good sets
Xi and Xj , respectively. The radius of the balls is small in comparison to the
distance between the good sets.

First we observe that for r = r∗, GB has exactly k components and each good set Xi

is contained within a distinct component. Each ball in GB overlaps with some Xi, and by
Lemma 2.6, since r∗ < 4dcrit, we know that each ball in GB overlaps with exactly one Xi.
From Lemma 2.6 we also know that balls that overlap different Xi cannot share any points
and are thus not connected in GB. Therefore balls that overlap different Xi will be in different
components in GB. Moreover, by Lemma 2.7 each Xi is contained in some ball of radius r∗. For
each good set Xi let us designate by Bi a ball that contains all the points in Xi (Figure 2.2),
which is in GB since the size of each good set satisfies |Xi| > b. Any ball in GB that overlaps
Xi will be connected to Bi, and will thus be in the same component as Bi. Therefore for r = r∗,
GB has exactly k components, one for each good set Xi that contains all the points in Xi.

Since there are at least n−b good points that are in some Xi, this means that for r = r∗ the
number of points that are in some ball in GB (which are in Clustered) is at least n− b. Hence
the condition in line 4 of Expand-Landmarks will be satisfied and the algorithm will terminate
and return a k-clustering in which each cluster contains points from a distinct good set Xi.

Now let us suppose that we start with r = 0. Consider the first value of r = r′ for which the
condition in line 4 is satisfied. At this point GB has exactly k components and the number of
points that are not in these components is at most b. It must be the case that r′ ≤ r∗ < 4dcrit

because we know that the condition is satisfied for r = r∗, and we are considering all relevant
values of r in ascending order. As before, each ball in GB must overlap some good set Xi.
Again using Lemma 2.6 we argue that since r < 4dcrit, no ball can overlap more than one Xi

and two balls that overlap different Xi cannot share any points. It follows that each component
of GB contains points from a single Xi (so we cannot merge the good sets). Moreover, since
the size of each good set satisfies |Xi| > b, and there are at most b points left out of GB, each
component must contain points from a distinct Xi (so we cannot split the good sets). Thus we
will return a k-clustering in which each cluster contains points from a distinct good set Xi.
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To prove the second part of the statement, let σ be a bijection matching each good set Xi to
the cluster C ′

σ(i) containing points from Xi. Clearly, C ′
σ(i) is made up of points in balls of radius

r < 4dcrit that overlap Xi. Consider any such ball Bl around landmark l and let s∗ denote any
point on which Bl and Xi overlap. By the triangle inequality, the distance between c∗i and l

satisfies d(c∗i , l) ≤ d(c∗i , s
∗) + d(s∗, l) < dcrit + r < 5dcrit. Therefore the distance between c∗i and

any landmark l ∈ C ′
σ(i) satisfies d(c∗i , l) < 5dcrit.

Lemma 2.6. A ball of radius r < 4dcrit cannot contain points from more than one good set Xi,
and two balls of radius r < 4dcrit that overlap different Xi cannot share any points.

Proof. To prove the first part, consider a ball Bl of radius r < 4dcrit around landmark l. In
other words, Bl = {s ∈ S | d(s, l) ≤ r}. If Bl overlaps more than one good set, then it must
have at least two points from different good sets x ∈ Xi and y ∈ Xj . By the triangle inequality
it follows that d(x, y) ≤ d(x, l) + d(l, y) ≤ 2r < 8dcrit. However, we know that d(x, y) > 16dcrit,
giving a contradiction.

To prove the second part, consider two balls Bl1 and Bl2 of radius r < 4dcrit around land-
marks l1 and l2. In other words, Bl1 = {s ∈ S | d(s, l1) ≤ r}, and Bl2 = {s ∈ S | d(s, l2) ≤ r}.
Assume that they overlap with different good sets Xi and Xj : Bl1 ∩Xi 6= ∅ and Bl2 ∩Xj 6= ∅.
For the purpose of contradiction, let’s assume that Bl1 and Bl2 share at least one point:
Bl1 ∩ Bl2 6= ∅, and use s∗ to refer to this point. By the triangle inequality, it follows that
the distance between any point x ∈ Bl1 and y ∈ Bl2 satisfies d(x, y) ≤ d(x, s∗) + d(s∗, y) ≤
[d(x, l1) + d(l1, s∗)] + [d(s∗, l2) + d(l2, y)] ≤ 4r < 16dcrit.

Since Bl1 overlaps with Xi and Bl2 overlaps with Xj , it follows that there is a pair of points
x ∈ Xi and y ∈ Xj such that d(x, y) < 16dcrit, a contradiction. Therefore if Bl1 and Bl2 overlap
different good sets, Bl1 ∩Bl2 = ∅.

Lemma 2.7. Given a set of landmarks L chosen by Landmark-Selection so that the condition
in Lemma 2.3 is satisfied, there is some value of r∗ < 4dcrit such that each Xi is contained in
some ball Bl around landmark l ∈ L of radius r∗.

Proof. For each good set Xi choose a point si ∈ Xi and a landmark li ∈ L that satisfy d(si, li) <

2dcrit. The distance between li and each point x ∈ Xi satisfies d(li, x) ≤ d(li, si) + d(si, x) <

2dcrit + 2dcrit = 4dcrit.

Consider r∗ = maxlimaxx∈Xid(li, x). Clearly, each Xi is contained in a ball Bli of radius r∗

and r∗ < 4dcrit.

Given Lemma 2.3 and Lemma 2.5 we are now ready to prove Theorem 2.2.

Proof. After using Landmark-Selection to choose O(k + ln 1
δ ) points, with probability at least

1 − δ there is a landmark closer than 2dcrit to some point in each good set. Given a set of
landmarks with this property, each cluster in the clustering C ′ = {C ′

1, C
′
2, . . . C

′
k} output by
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Expand-Landmarks contains points from a distinct good set Xi. This clustering can exclude
up to b points, all of which may be good. Nonetheless, this means that C ′ may disagree with
C∗ on only the bad points and at most b good points. The number of points that C ′ and C∗

disagree on is therefore at most 2b = O(εn/α). Thus, C ′ is at least O(ε/α)-close to C∗, and at
least O(ε/α + ε)-close to CT .

Moreover, C ′ has an additional property that allows us to find a clustering that is ε-close to
CT . If we use σ to denote a bijection mapping each good set Xi to the cluster C ′

σ(i) containing
points from Xi, any landmark l ∈ C ′

σ(i) is closer than 5dcrit to c∗i . We can use this observation
to find all points that satisfy one of the properties of the good points: points x such that
w2(x)−w(x) ≥ 17dcrit. Let us call these points the detectable points. To clarify, the detectable
points are those points that are much closer to their own cluster center than to any other cluster
center in C∗, and the good points are a subset of the detectable points that are also very close
to their own cluster center.

To find the detectable points using C ′, we choose some landmark li from each C ′
i. For each

point x ∈ S, we then insert x into the cluster C ′′
j for j = argminid(x, li). Lemma 2.8 argues

that each detectable point in C∗
i is closer to every landmark in C ′

σ(i) than to any landmark
in C ′

σ(j 6=i). It follows that C ′′ and C∗ agree on all the detectable points. Since there are
fewer than (ε − ε∗)n points on which CT and C∗ agree that are not detectable, it follows that
dist(C ′′, CT ) < (ε− ε∗) + dist(CT , C∗) = (ε− ε∗) + ε∗ = ε.

Therefore using O(k+ln 1
δ ) landmarks we get an accurate clustering with probability at least

1 − δ. The runtime of Landmark-Selection is O(|L|n), where |L| is the number of landmarks.
Using a min-heap to store all landmark-point pairs and a disjoint-set data structure to keep track
of the connected components of GB, Expand-Landmarks can be implemented in O(|L|n log n)
time. A detailed description of this implementation is given in the next section. The last
part of our procedure takes O(kn) time, so the runtime of our implementation is O(|L|n log n).
Therefore to get an accurate clustering with probability 1 − δ the runtime of our algorithm
is O((k + ln 1

δ )n log n). Moreover, we only consider the distances between the landmarks and
other points, so we only use O(k + ln 1

δ ) one versus all distance queries.

Lemma 2.8. Suppose the distance between c∗i and any landmark l in C ′
σ(i) satisfies d(c∗i , l) <

5dcrit. Then given point x ∈ C∗
i that satisfies w2(x) − w(x) ≥ 17dcrit, for any l1 ∈ C ′

σ(i) and
l2 ∈ C ′

σ(j 6=i) it must be the case that d(x, l1) < d(x, l2).

Proof. We will show that d(x, l1) < w(x) + 5dcrit (1), and d(x, l2) > w(x) + 12dcrit (2). This
implies that d(x, l1) < d(x, l2).

To prove (1), by the triangle inequality d(x, l1) ≤ d(x, c∗i ) + d(c∗i , l1) = w(x) + d(c∗i , l1) <

w(x) + 5dcrit. To prove (2), by the triangle inequality d(x, l2) ≥ d(x, c∗j ) − d(l2, c∗j ). Since
d(x, c∗j ) ≥ w2(x) and d(l2, c∗j ) < 5dcrit we have

d(x, l2) > w2(x)− 5dcrit. (2.1)
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Moreover, since w2(x)− w(x) ≥ 17dcrit we have

w2(x) ≥ 17dcrit + w(x). (2.2)

Combining Equation 2.1 and Equation 2.2 it follows that d(x, l2) > (17dcri + w(x)) − 5dcrit =
w(x) + 12dcrit.

2.4 Implementation of Expand-Landmarks

A detailed description of our implementation is given in Algorithm 2.4. In order to efficiently

expand balls around landmarks, we build a min-heap H of landmark-point pairs (l, s), where

the key of each pair is the distance between l and s. In each iteration we find (l∗, s∗) =

H.deleteMin(), and then add s∗ to items(l∗), which stores the points in Bl∗ . We store points

that have been clustered (points in balls of size larger than smin) in the set Clustered.

Our implementation assigns each clustered point s to a “representative” landmark, denoted

by l(s). The representative landmark of s is the landmark l of the first large ball Bl that contains

s. To efficiently update the components of GB, we maintain a disjoint-set data structure U

that contains sets corresponding to the connected components of GB, where each ball Bl is

represented by landmark l. In other words, U contains a set {l1, l2, . . . , li} iff Bl1 , Bl2 , . . . , Bli

form a connected component in GB.

For each large ball Bl our algorithm considers all points s ∈ Bl and performs Update-

Components(l, s), which works as follows. If s does not have a representative landmark we

assign it to l, otherwise s must already be in Bl(s), and we assign Bl to the same component

as Bl(s). If none of the points in Bl are assigned to other landmarks, it will be in its own

component.
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Algorithm 2.4 Expand-Landmarks(smin, n
′, L)

1: A = ();
2: for each s ∈ S do
3: l(s) = null;
4: for each l ∈ L do
5: A.add((l, s), d(l, s));
6: end for
7: end for
8: H = build-heap(A);
9: for each l ∈ L do

10: items(l) = ();
11: end for
12: Set Clustered = ();
13: U = ();
14: while H.hasNext() do
15: (l∗, s∗) = H.deleteMin();
16: items(l∗).add(s∗);
17: if items(l∗).size() == smin then
18: Activate(l∗);
19: end if
20: if items(l∗).size() > smin then
21: Update-Components(l∗, s∗);
22: Clustered.add(s∗);
23: end if
24: if Clustered.size() ≥ n′ and U .size() == k then
25: return Format-Clustering();
26: end if
27: end while
28: return no-cluster;

Algorithm 2.5 Update-Components(l, s)
1: if l(s) == null then
2: l(s) = l;
3: else
4: c1 = U .find(l);
5: c2 = U .find(l(s));
6: U .union(c1, c2);
7: end if
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Algorithm 2.6 Activate(l)
1: U .MakeSet(l);
2: for each s ∈ items(l) do
3: Update-Components(l, s);
4: Clustered.add(s);
5: end for

Algorithm 2.7 Format-Clustering()
1: C = ();
2: for each Set L in U do
3: Set Cluster = ();
4: for each l ∈ L do
5: for each s ∈ items(l) do
6: Cluster.add(s);
7: end for
8: end for
9: C.add(Cluster);

10: end for
11: return C;

During the execution of the algorithm the connected components of GB correspond to the

sets of U (where each ball Bl is represented by landmark l). Suppose that Bl1 and Bl2 are

connected in GB, then Bl1 and Bl2 must overlap on some point s. Without loss of generality,

suppose s is added to Bl1 before it is added to Bl2 . When s is added to Bl1 , l(s) = l1 if s does

not yet have a representative landmark (lines 1-2 of Update-Components), or l(s) = l′ and both

l1 and l′ are put in the same set (lines 4-6 of Update-Components). When s is added to Bl2 ,

if l(s) = l1, then l1 and l2 will be put in the same set. If l(s) = l′, l′ and l2 will be put in the

same set, which also contains l1.

It follows that whenever Bl1 and Bl2 are in the same connected component in GB, l1 and l2

will be in the same set in U . Moreover, if Bl1 and Bl2 are not in the same component in GB,

then l1 and l2 can never be in the same set in U because both start in distinct sets (line 1 of

Activate), and it is not possible for a set containing l1 to be merged with a set containing l2.

It takes O(|L|n) time to build H (linear in the size of the heap). Each deleteMin() operation

takes O(log(|L|n)) (logarithmic in the size of the heap), which is equivalent to O(log(n)) be-
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cause |L| ≤ n. If U is implemented by a union-find algorithm Update-Components takes amor-

tized time of O(α(|L|), where α denotes the inverse Ackermann function. Moreover, Update-

Components may only be called once for each iteration of the while loop in Expand-Landmarks

(it is either called immediately on l∗ and s∗ if Bl∗ is large enough, or it is called when the ball

grows large enough in Activate). All other operations also take time proportional to the number

of landmark-point pairs. So the runtime of this algorithm is O(|L|n) + iter ·O(log n + α(|L|)),

where iter is the number of iterations of the while loop. As the number of iterations is bounded

by |L|n, and α(|L|) is effectively constant, this gives a worst-case running time of O(|L|n log n).

2.5 Empirical Study

We use our Landmark Clustering algorithm to cluster proteins using sequence similarity. One

versus all distance queries are particularly relevant in this setting because of sequence database

search programs such as BLAST (Basic Local Alignment Search Tool) [AGM+90]. For each

data set we first build a BLAST database containing all the sequences, and then compare only

some of the sequences to the entire database. BLAST aligns the queried sequence to sequences

in the database, and produces a “bit score” for each alignment, which is a measure of its

quality (we invert the bit score to make it a distance). However, BLAST does not consider

alignments with some of the sequences in the database, in which case we assign distances of

infinity to the corresponding sequences. We observe that if we define distances in this manner

they almost form a metric in practice: when we draw triplets of sequences at random and

check the distances between them the triangle inequality is almost always satisfied. Moreover,

BLAST is very successful at detecting sequence homology in large sequence databases, therefore

it is plausible that clustering using these distances satisfies the (c, ε)-property for some relevant

clustering CT .

We perform experiments on data sets obtained from two classification databases: Pfam

[FMT+10], version 24.0, October 2009; and SCOP [MBHC95], version 1.75, June 2009. Both

of these sources classify proteins by their evolutionary relatedness, therefore we can use their

classifications as a ground truth to evaluate the clusterings produced by our algorithm and

other methods.
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Pfam classifies proteins using hidden Markov models (HMMs) that represent multiple se-

quence alignments. There are two levels in the Pfam classification hierarchy: family and clan.

In our clustering experiments we compare with a classification at the family level because the

relationships at the clan level are less likely to be discerned with sequence alignment. In each

experiment we randomly select several large families (of size between 1000 and 10000) from

Pfam-A (the manually curated part of the classification), retrieve the sequences of the proteins

in these families, and use our Landmark-Clustering algorithm to cluster the data set.

SCOP groups proteins on the basis of their 3D structures, so it only classifies proteins whose

structure is known. Thus the data sets from SCOP are much smaller in size. The SCOP clas-

sification is also hierarchical: proteins are grouped by class, fold, superfamily, and family. We

consider the classification at the superfamily level because this seems most appropriate given

that we are only using sequence information. As with the Pfam data, in each experiment we

create a data set by randomly choosing several superfamilies (of size between 20 and 200), re-

trieve the sequences of the corresponding proteins, and use our Landmark-Clustering algorithm

to cluster the data set.

Once we cluster a particular data set, we compare the clustering to the manual classification

using the distance measure from the theoretical part of our work. To find the fraction of

misclassified points under the optimal matching of clusters in C to clusters in C ′ we solve a

minimum weight bipartite matching problem where the cost of matching Ci to C ′
σ(i) is |Ci −

C ′
σ(i)|/n.

2.5.1 Choice of Parameters

To run Landmark-Clustering, we set k using the number of clusters in the ground truth clus-

tering. For each Pfam data set we use 40k landmarks/queries, and for each SCOP data set

we use 30k landmarks/queries. In addition, our algorithm uses three parameters (q, smin, n
′)

whose value is set in the proof based on α and ε, assuming that the clustering instance satisfies

the (1 + α, ε)-property. In practice we must choose some value for each parameter. In our

experiments we set them as a function of the number of points in the data set, and the number

of clusters. We set q = 2n/k, smin = 0.05n/k for Pfam data sets, and smin = 0.1n/k for SCOP
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data sets, and n′ = 0.5n. Since the selection of landmarks is randomized, for each data set we

perform several clusterings, compare each to the ground truth, and report the median quality.

Landmark-Clustering is most sensitive to the smin parameter, and will not report a clustering

if smin is too small or too large. We recommend trying several reasonable values of smin, in

increasing or decreasing order, until you get a clustering and none of the clusters are too large.

If you get a clustering where one of the clusters is very large, this likely means that several

ground truth clusters have been merged. This may happen because smin is too small causing

balls of outliers to connect different cluster cores, or smin is too large causing balls in different

cluster cores to overlap.

The algorithm is less sensitive to the n′ parameter. However, if you set n′ too large some

ground truth clusters may be merged, so we recommend using a smaller value (0.5n ≤ n′ ≤ 0.7n)

because all of the points are still clustered during the last step. Again, for some values of n′

the algorithm may not output a clustering, or output a clustering where some of the clusters

are too large. Our algorithm is least sensitive to the q parameter. Using more landmarks (if

you can afford it) can make up for a poor choice of q.

2.5.2 Results

Figure 2.3 shows the results of our experiments on the Pfam data sets. One can see that for

most of the data sets (other than data sets 7 and 9) we find a clustering that is almost identical

to the ground truth. These data sets are very large, so as a benchmark for comparison we

can only consider algorithms that use a comparable amount of distance information (since we

do not have the full distance matrix). A natural choice is the following algorithm: randomly

choose a set of landmarks L, |L| = d; embed each point in a d-dimensional space using distances

to L; use k-means clustering in this space (with distances given by the Euclidian norm). Our

embedding scheme is a Lipschitz embedding with singleton subsets (see [TC03]), which gives

distances with low distortion for points near each other in a metric space.

Notice that this procedure uses exactly d one versus all distance queries, so we can set

d equal to the number of queries used by our algorithm. We expect this algorithm to work

well, and if you look at Figure 2.3 you can see that it finds reasonable clusterings. Still, the
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Figure 2.3: Comparing the performance of k-means in the embedded space
(gray) and Landmark-Clustering (black) on 10 data sets from Pfam. Data sets
1-10 are created by randomly choosing 8 families from Pfam of size s, 1000 ≤
s ≤ 10000.

clusterings reported by this algorithm do not closely match the Pfam classification, showing

that our results are indeed significant.

Figure 2.4 shows the results of our experiments on the SCOP data sets. These results are

not as good, which is likely because the SCOP classification at the superfamily level is based on

biochemical and structural evidence in addition to sequence evidence. By contrast, the Pfam

classification is based entirely on sequence information. Still, because the SCOP data sets are

much smaller, we can compare our algorithm to methods that require distances between all

the points. In particular, Paccanaro, Casbon, and Saqi showed that spectral clustering using

sequence data works well when applied to the proteins in SCOP [PCS06]. Thus we use the exact

method described by Paccanaro et al. as a benchmark for comparison on the SCOP data sets.

Moreover, other than clustering randomly generated data sets from SCOP, we also consider

the two main examples from Paccanaro et al., which are labeled A and B in the figure. From

Figure 2.4 we can see that the performance of Landmark-Clustering is comparable to that of

the spectral method, which is very good considering that the algorithm used by Paccanaro et

al. significantly outperforms other clustering algorithms on this data [PCS06]. Moreover, the
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Figure 2.4: Comparing the performance of spectral clustering (gray) and
Landmark-Clustering (black) on 10 data sets from SCOP. Data sets A and B
are the two main examples from Paccanaro et al. [PCS06], the other data sets
(1-8) are created by randomly choosing 8 superfamilies from SCOP of size s,
20 ≤ s ≤ 200.

spectral clustering algorithm requires the full distance matrix as input, and takes much longer

to run.

2.5.3 Testing the approximation stability assumption

To see whether the (c, ε) property is a reasonable assumption for our data, we look at whether

our data sets have the structure implied by our assumption. We do this by measuring the

separation of the ground truth clusters in our data sets. For each data set in our study,

we sample some points from each ground truth cluster. We consider whether the sampled

points are more similar to points in the same cluster than to points in other clusters. More

specifically, for each point we record the median within-cluster similarity, and the maximum

between-cluster similarity. If our data sets indeed have well-separated cluster cores, as implied

by our assumption, then for a lot of the points the median within-cluster similarity should

be significantly larger than the maximum between-cluster similarity. We can see that this

is indeed the case for the Pfam data sets. However, this is not typically the case for the

SCOP data sets, where most points have little similarity to the majority of the points in their
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ground truth cluster. These observations explain our results on the two sets of data: we are

able to accurately cluster the Pfam data sets, and our algorithm is much less accurate on

the SCOP data sets. The complete results of these experiments can be found at http://cs-

people.bu.edu/kvodski/clusteringProperties/description.html.
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Chapter 3

Clustering with Limited Information Given a Different

Structure

In this chapter we present a limited information algorithm that clusters accurately given that

the approximation stability property is satisfied for the min-sum objective. If the (c, ε)-property

holds for the min-sum objective, the structure of the clustering instance is quite different, and

the algorithm presented in the previous chapter fails to find an accurate clustering. The min-

sum objective is also considerably harder to approximate. For the k-median objective the best

approximation guarantee is (3 + ε) given by Arya et al. [AGK+04]. For the min-sum objective

when the number of clusters is arbitrary there is an O(δ−1 log1+δ n)-approximation algorithm

with running time nO(1/δ) due to Bartal, Charikar, and Raz [BCR01].

In this chapter we describe a different limited information algorithm that requires O(k log k)

one versus all queries, where k is the number of clusters. Section 3.1 defines the min-sum objec-

tive function and the closely related balanced k-median objective. Our Landmark-Clustering-

Min-Sum algorithm is presented in Section 3.2, with some details omitted. This section also

gives our theoretical performance guarantee, and some high-level intuition for our theoretical

arguments. Section 3.3 formally describes the structure of the clustering instance that follows

from the (c, ε)-property for the min-sum objective function, and gives a full description of the

algorithm and its proof of correctness.

Our theoretic arguments require that we know the optimum objective value OPT. This

is usually not true in practice, and Section 3.3 contains additional analysis concerning what

happens when we do not know OPT, and must estimate one of the parameters of the algorithm.

This discussion also gives intution about how to choose this parameter in practice. We conclude

with the results of our experimental study, which are presented in Section 3.4. We show that

our algorithm can accurately cluster protein sequences if we use BLAST as the one versus all

query. We also describe cases where Landmark-Clustering-Min-Sum is likely to produce a more

meaningful clustering than the algorithm presented in the previous chapter.
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3.1 Approximation Stability of the Min-Sum Objective Function

The min-sum objective function for clustering is to minimize Φ(C) =
∑k

i=1

∑
x,y∈Ci

d(x, y). We

reduce the min-sum clustering problem to the related balanced k-median problem. The balanced

k-median objective function seeks to minimize Ψ(C) =
∑k

i=1 |Ci|
∑

x∈Ci
d(x, ci), where ci is the

median of cluster Ci, which is the point y ∈ Ci that minimizes
∑

x∈Ci
d(x, y). As pointed out

in [BCR01], in metric spaces the two objective functions are related to within a factor of 2:

Ψ(C)/2 ≤ Φ(C) ≤ Ψ(C).

In our analysis we assume that S satisfies the (c, ε) approximation stability property of

Balcan, Blum, and Gupta [BBG09] for the min-sum and balanced k-median objective functions.

The (c, ε)-property is formally defined in the previous chapter.

We note that because any (1 + α)-approximation of the balanced k-median objective is

a 2(1 + α)-approximation of the min-sum objective, it follows that if the clustering instance

satisfies the (2(1 + α), ε)-property for the min-sum objective, then it satisfies the (1 + α, ε)-

property for balanced k-median.

3.2 Landmark-Clustering-Min-Sum

In this section we present a clustering algorithm that given the (1 + α, ε)-property for the

balanced k-median objective finds an accurate clustering in a limited distance information

setting. Our algorithm is outlined in Algorithm 3.1, with some details omitted. We start by

uniformly at random choosing n′ points that we call landmarks, where n′ is an appropriate

number. For each landmark that we choose we use a one versus all query to get the distances

between this landmark and all other points. These are the only distances used by our procedure.

Our algorithm then expands a ball Bl around each landmark l ∈ L one point at a time.

We first sort all landmark-point pairs (l, s) by d(l, s). We then consider these pairs in order

of increasing distance, skipping pairs where l or s have already been clustered; the clustered

points are maintained in the set S̄. In each iteration we check whether some ball Bl∗ passes

the test in line 13. Our test considers the size of the ball and the next largest landmark-point

distance, and checks whether their product is greater than the threshold T . If this is the case,

we consider all balls that overlap Bl∗ on any points, and compute a cluster that contains all
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the points in these balls. Points and landmarks in the cluster are then removed from further

consideration by adding the clustered points to S̄, and removing the clustered points from any

ball.

Our procedure terminates once we find k clusters. If we reach the final landmark-point

pair, we stop and report the remaining unclustered points as part of the same cluster. If

the algorithm terminates without partitioning all the points, we assign each remaining point

to the cluster containing the closest clustered landmark. In our analysis we show that if the

clustering instance satisfies the (1+α, ε)-property for the balanced k-median objective function,

our procedure will output exactly k clusters.

The most time-consuming part of our algorithm is sorting all landmark-points pairs, which

takes O(|L|n log n), where n is the size of the data set and L is the set of landmarks. With a

simple implementation that uses a hashed set to store the points in each ball, the total cost of

computing the clusters and removing clustered points from active balls is at most O(|L|n) each.

All other operations take asymptotically less time, so the overall runtime of our procedure is

O(|L|n log n).
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Algorithm 3.1 Landmark-Clustering-Min-Sum(k, n′, T )
1: L = Landmark-Selection(n′);
2: for each l ∈ L do
3: Bl = ∅;
4: end for
5: i = 1, S̄ = ∅;
6: while i ≤ k do
7: (l, s) = GetNextActivePair();
8: Bl = Bl + {s};
9: (l′, s′) = PeekNextActivePair();

10: if d(l, s) == d(l′, s′) then
11: continue;
12: end if
13: while ∃l∗ ∈ L− S̄ : |Bl∗ | · d(l′, s′) > T do
14: L′ = {l ∈ L− S̄ : Bl ∩Bl∗ 6= ∅};
15: Ci = {s ∈ S : s ∈ Bl and l ∈ L′};
16: for each s ∈ Ci do
17: S̄ = S̄ + {s};
18: for each l ∈ L do
19: Bl = Bl − {s};
20: end for
21: end for
22: i = i + 1;
23: end while
24: end while
25: return C = {C1, . . . Ck};

We now present our theoretical guarantee for Algorithm 3.1.

Theorem 3.1. Given a metric space M = (X, d), where d is unknown, and a set of points
S, if the instance (S, d) satisfies the (1 + α, ε)-property for the balanced-k-median objective
function, we are given the optimum objective value OPT, and each cluster in the target clustering
CT has size at least (6 + 240/α)εn, then Landmark-Clustering-Min-Sum(k, n′, αOPT

40εn ) outputs
a clustering that is O(ε/α)-close to CT with probability at least 1 − δ. The algorithm uses
n′ = 1

(3+120/α)ε ln k
δ one versus all distance queries, and has a runtime of O(n′n log n).

We note that n′ = O(k ln k
δ ) if the sizes of the target clusters are balanced. In addition, if we

do not know the value of OPT, we can still find an accurate clustering by running Algorithm 3.1

from line 2 at most n′n2 times with increasing estimates of T until enough points are clustered.
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Figure 3.1: Cluster cores C1, C2 and C3 are shown with diameters d1, d2 and
d3, respectively. The diameters of the cluster cores are inversely proportional to
their sizes.

It is not necessary to recompute the landmarks, so the number of distance queries that are

required remains the same. We next give some high-level intuition for how our procedures

work.

Given our approximation stability assumption, the target clustering must have the structure

shown in Figure 3.1. Each target cluster Ci has a “core” of well-separated points, where any

two points in the cluster core are closer than a certain distance di to each other, and any point

in a different core is farther than cdi, for some constant c. Moreover, the diameters of the

cluster cores are inversely proportional to the cluster sizes: there is some constant θ such that

|Ci| · di = θ for each cluster Ci. Given this structure, it is possible to classify the points in the

cluster cores correctly if we extract the smaller diameter clusters first. For example, we can

extract C1, followed by C2 and C3 if we choose the threshold T correctly and we have selected

a landmark from each cluster core. However, if we wait until some ball contains all of C3, C1

and C2 may be merged.

3.3 Algorithm Analysis

In this section we present a formal analysis of our algorithm, and give the proof of Theorem 3.1.

We first describe the structure of the clustering instance that is implied by the (1+α, ε)-property

for the balanced k-median objective function. We then present a more complete description of

the algorithm that we refer to in our proof. We then give a general overview of our argument,
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which is followed by the complete proof.

3.3.1 Structure of the Clustering Instance

We denote by C∗ = {C∗
1 , . . . , C∗

k} the optimal balanced-k-median clustering with objective

value OPT=Ψ(C∗). For each cluster C∗
i , let c∗i be the median point in the cluster. For x ∈ C∗

i ,

define w(x) = |C∗
i |d(x, c∗i ) and let w = avgxw(x) = OPT

n . Define w2(x) = minj 6=i|C∗
j |d(x, c∗j ).

It is proved in [BBG09] that if the instance satisfies the (1+α, ε)-property and each cluster in

C∗ has size at least max(6, 6/α) · εn, then at most 2ε-fraction of points x ∈ S have w2(x) < αw
4ε .

In addition, by definition of the average weight w at most 120ε/α-fraction of points x ∈ S have

w(x) > αw
120ε .

We call point x good if both w(x) ≤ αw
120ε and w2(x) ≥ αw

4ε , else x is called bad. Let Xi be

the good points in the optimal cluster C∗
i , and let B = S \ ∪Xi be the bad points.

Lemma 3.3, which is very similar to Lemma 14 of [BBG09], proves that the optimum

balanced k-median clustering must have the following structure:

1. For all x, y in the same Xi, we have d(x, y) ≤ αw
60ε|C∗

i |
.

2. For x ∈ Xi and y ∈ Xj 6=i, d(x, y) > αw
5ε / min(|C∗

i |, |C∗
j |).

3. The number of bad points is at most b = (2 + 120/α)εn.

3.3.2 Full Algorithm Description

We next give a more detailed description of our algorithm.



37

Algorithm 3.2 Landmark-Clustering-Min-Sum(k, n′, T )
1: L = Landmark-Selection(n′);
2: for each l ∈ L do
3: Bl = ∅;
4: end for
5: i = 1, S̄ = ∅;
6: while i ≤ k do
7: (l, s) = GetNextActivePair();
8: r1 = d(l, s);
9: if ((l′, s′) = PeekNextActivePair()) ! = null then

10: r2 = d(l′, s′);
11: else
12: Ci = S − S̄;
13: break;
14: end if
15: Bl = Bl + {s};
16: if r1 == r2 then
17: continue;
18: end if
19: while ∃l ∈ L− S̄ : |Bl| > T/r2 and i ≤ k do
20: l∗ = argmaxl∈L−S̄ |Bl|;
21: L′ = {l ∈ L− S̄ : Bl ∩Bl∗ 6= ∅};
22: Ci = {s ∈ S : s ∈ Bl and l ∈ L′};
23: for each s ∈ Ci do
24: S̄ = S̄ + {s};
25: for each l ∈ L do
26: Bl = Bl − {s};
27: end for
28: end for
29: i = i + 1;
30: end while
31: end while
32: return C = {C1, . . . Ck};

3.3.3 Proof of Theorem 3.1 and Additional Analysis

Our algorithm expands a ball around each landmark, one point at a time, until some ball is

large enough. We use r1 to refer to the current radius of the balls, and r2 to refer to the next
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relevant radius (next largest landmark-point distance). To pass the test in line 19, a ball must

satisfy |Bl| > T/r2. We choose T such that by the time a ball satisfies the conditional, it must

overlap some good set Xi. Moreover, at this time the radius must be large enough for Xi to

be entirely contained in some ball; Xi will therefore be part of the cluster computed in line 21.

However, the radius is too small for a single ball to overlap different good sets and for two balls

overlapping different good sets to share any points. Therefore the computed cluster cannot

contain points from any other good set. Points and landmarks in the cluster are then removed

from further consideration. The same argument can then be applied again to show that each

cluster output by the algorithm entirely contains a single good set. Thus the clustering output

by the algorithm agrees with C∗ on all the good points, so it must be closer than b+ε = O(ε/α)

to CT . A more detailed argument is given below.

Proof. Since each cluster in the target clustering has more than (6 + 240/α)εn points, and the
optimal balanced-k-median clustering C∗ can differ from the target clustering by fewer than εn

points, each cluster in C∗ must have more than (5+240/α)εn points. Moreover, by Lemma 3.3
we may have at most (2+120/α)εn bad points, and hence each |Xi| = |C∗

i \B| > (3+120/α)εn.
We will use s to refer to the (3 + 120/α)εn quantity.

Our argument assumes that we have chosen at least one landmark from each good set Xi.
Lemma 3.4 argues that after selecting n′ = n

s lnk
δ = 1

(3+120/α)ε ln
k
δ landmarks the probability

of this happening is at least 1 − δ. Moreover, if the target clusters are balanced in size:
maxC∈CT

|C|/ minC∈CT
|C| ≤ c for some constant c, because the size of each good set is at

least half the size of the corresponding target cluster, it must be the case that 2sc · k ≥ n, so
n/s = O(k).

Suppose that we order the clusters of C∗ such that |C∗
1 | ≥ |C∗

2 | ≥ . . . |C∗
k |, and let ni = |C∗

i |.
Define di = αw

60ε|C∗
i |

and recall that maxx,y∈Xi d(x, y) ≤ di. Note that because there is a landmark
in each good set Xi, for radius r ≥ di there exists some ball containing all of Xi. We use Bl(r)
to denote a ball of radius r around landmark l: Bl(r) : {s ∈ S | d(s, l) ≤ r}.

If we apply Lemma 3.5 with all the clusters in C∗, we can see that as long as r ≤ 3d1, a
ball cannot contain points from more than one good set and balls overlapping different good
sets cannot share any points. We also observe that when both r ≤ 3d1 and r < di are true, a
ball Bl(r) containing points from Xi does not satisfy |Bl(r)| ≥ T/r. For r ≤ 3d1 a ball cannot
contain points from different good sets; therefore any ball containing points from Xi has size
at most |C∗

i |+ b < 3ni
2 . In addition, for r < di the size bound T/r > T/di = αw

40ε/
αw

60ε|C∗
i |

= 3ni
2 .

Therefore for these values of r any ball containing points from Xi is too small to satisfy the
conditional.

Finally, we observe that for r = 3d1 some ball Bl(r) containing all of X1 does satisfy
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|Bl(r)| ≥ T/r. Clearly, for r = 3d1 there is some ball containing all of X1, which must have size
at least |C∗

1 | − b ≥ n1/2. For r = 3d1 the size bound T/r = n1/2, so this ball is large enough to
satisfy this conditional. Moreover, for r ≤ 3d1 the size bound T/r is at least n1/2. Therefore
a ball containing only bad points cannot pass our test for r ≤ 3d1 because the number of bad
points is at most b < n1/2.

Consider the smallest radius r∗ for which some ball Bl∗(r∗) satisfies |Bl∗(r∗)| ≥ T/r∗. It
must be the case that r∗ ≤ 3d1, and Bl∗ overlaps with some good set Xi because we cannot
have a ball containing only bad points for r∗ ≤ 3d1. Moreover, by our previous argument
because Bl∗ contains points from Xi, it must be the case that r∗ ≥ di, and therefore some ball
contains all the points in Xi. Consider a cluster Ĉ of all the points in balls that overlap Bl∗ :
Ĉ = {s ∈ S | s ∈ Bl and Bl ∩ Bl∗ 6= ∅}, which must include all the points in Xi. In addition,
Bl∗ cannot share any points with balls that overlap other good sets because r∗ ≤ 3d1, therefore
Ĉ does not contain points from any other good set. Therefore the cluster Ĉ entirely contains
some good set and no points from any other good set.

These facts suggest the following algorithm for finding a clustering that classifies all the
good points correctly: increment r until some ball satisfies |Bl(r)| ≥ T/r, compute the cluster
containing all points in balls that overlap Bl(r), remove these points, and repeat until we find k

clusters. We can argue that each cluster output by the algorithm entirely contains some good
set and no points from any other good set. Each time we can consider the clusters C ⊆ C∗

whose good sets have not yet been output, order them by size, and apply Lemma 3.5 with C

to argue that while r ≤ 3d1 the radius is too small for the computed cluster to overlap any
of the remaining good sets. As before, we can argue that by the time we reach 3d1 we must
output some cluster. In addition, when r ≤ 3d1 we cannot output a cluster containing only bad
points and whenever we output a cluster overlapping some good set Xi, it must be the case
that r ≥ di. Therefore the computed cluster must contain all of Xi and no points from any
other good set.

If there are any unclustered points upon the completion of the algorithm, we can assign the
remaining points to any cluster. Still, we are able to classify all the good points correctly, so
the reported clustering must be closer than b + dist(C∗, CT ) < b + ε = O(ε/α) to CT .

It suffices to show that even though our algorithm only considers discrete values of r corre-
sponding to landmark-point distances, the output of our procedure exactly matches the output
of the conceptual algorithm described above. Consider the smallest (continuous) radius r∗ for
which some ball Bl1(r

∗) satisfies |Bl1(r
∗)| ≥ T/r∗. We use dreal to refer to the largest landmark-

point distance such that dreal ≤ r∗. Clearly, by the time our algorithm reaches r1 = dreal it
must be the case that Bl1 passes the test on line 19: |Bl1 | > T/r2, and this test is not passed
by any ball at any prior time. Moreover, Bl1 must be the largest ball passing our test at this
point because if there is another ball Bl2 that also satisfies our test when r1 = dreal it must
be the case that |Bl1 | > |Bl2 | because Bl1 satisfies |Bl1(r)| ≥ T/r for a smaller r. Finally
because there are no landmark-point pairs (l, s) with r1 < d(l, s) < r2, Bl(r1) = Bl(r∗) for each
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landmark l ∈ L. Therefore the cluster that we compute on line 22 for Bl1(r1) is equivalent to
the cluster the conceptual algorithm computes for Bl1(r

∗). We can repeat this argument for
each cluster output by the conceptual algorithm, showing that Algorithm 3.2 finds exactly the
same clustering.

We note that when there is only one good set left the test in line 19 may not be satisfied
anymore if 3d1 ≥ maxx,y∈S d(x, y), where d1 is the diameter of the remaining good set. However,
in this case if we exhaust all landmark-points pairs we report the remaining points as part of a
single cluster (line 12), which must contain the remaining good set.

With a simple implementation that uses a hashed set to keep track of the points in each
ball, the runtime of our procedure is O(|L|n log n), which is given by the time necessary to sort
all landmark-point pairs by distance. All other operations take asymptotically less time. In
particular, over the entire run of the algorithm, the cost of computing the clusters in lines 21-22
is at most O(n|L|), and the cost of removing clustered points from active balls in lines 23-28 is
also at most O(n|L|).

Theorem 3.2. If we are not given the optimum objective value OPT, then we can still find
a clustering that is O(ε/α)-close to CT with probability at least 1 − δ by running Landmark-
Clustering-Min-Sum at most n′n2 times with the same set of landmarks, where the number of
landmarks n′ = 1

(3+120/α)ε ln k
δ as before.

Proof. If we are not given the value of OPT and therefore do not know the value of w = OPT
n ,

then we have to estimate the threshold parameter T for deciding when a cluster develops. Let
us use T ∗ to refer to its correct value (T ∗ = αw

40ε). We first note that there are at most n · n|L|
relevant values of T to try, where L is the set of landmarks. Our test in line 19 checks whether
the product of a ball size and a ball radius is larger than T , and there are only n possible ball
sizes and |L|n possible values of a ball radius.

Suppose that we choose a set of landmarks L, |L| = n′, as before. We then compute all n′n2

relevant values of T and order them in ascending order: Ti ≤ Ti+1 for 1 ≤ i < n′n2. Then we
repeatedly execute Algorithm 3.2 starting on line 2 with increasing estimates of T . Note that
this is equivalent to trying all continuous values of T in ascending order because the execution
of the algorithm does not change for any T ′ such that Ti ≤ T ′ < Ti+1. In other words, when
Ti ≤ T ′ < Ti+1, the algorithm will give the same exact answer for Ti as it would for T ′.

Our procedure stops the first time we cluster at least n− b points, where b is the maximum
number of bad points. We give an argument that this gives an accurate clustering with an
additional error of b.

As before, we assume that we have selected at least one landmark from each good set,
which happens with probability at least 1− δ. Clearly, if we choose the right threshold T ∗ the
algorithm must cluster at least n − b points because the clustering will contain all the good
points. Therefore the first time the algorithm clusters at least n− b points for some estimated
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threshold T , it must be the case that T ≤ T ∗. Lemma 3.6 argues that if T ≤ T ∗ and the
number of clustered points is at least n− b, then the reported partition must be a k-clustering
that contains a distinct good set in each cluster. This clustering may exclude up to b points,
all of which may be good points. Still, if we arbitrarily assign the remaining points we will get
a clustering that is closer than 2b + ε = O(ε/α) to CT .

Lemma 3.3. If the balanced k-median instance satisfies the (1+α, ε)-property and each cluster
in C∗ has size at least max(6, 6/α) · εn we have:

1. For all x, y in the same Xi, we have d(x, y) ≤ αw
60ε|C∗

i |
.

2. For x ∈ Xi and y ∈ Xj 6=i, d(x, y) > αw
5ε / min(|C∗

i |, |C∗
j |).

3. The number of bad points is at most b = (2 + 120/α)εn.

Proof. For part 1, since x, y ∈ Xi ⊆ C∗
i are both good, they are at distance of at most αw

120ε|C∗
i |

to c∗i , and hence at distance of at most αw
60ε|C∗

i |
to each other.

For part 2 assume without loss of generality that |C∗
i | ≥ |C∗

j |. Both x ∈ C∗
i and y ∈ C∗

j are
good; it follows that d(y, c∗j ) ≤ αw

120ε|C∗
j |

, and d(x, c∗j ) > αw
4ε|C∗

j |
because |C∗

j |d(x, c∗j ) ≥ w2(x) > αw
4ε .

By the triangle inequality it follows that

d(x, y) ≥ d(x, c∗j )− d(y, c∗j ) ≥
αw

ε|C∗
j |

(
1
4
− 1

120
) >

αw

5ε
/ min(|C∗

i |, |C∗
j |),

where we use that |C∗
j | = min(|C∗

i |, |C∗
j |).

Part 3 follows from the maximum number of points that may not satisfy each of the prop-
erties of the good points and the union bound.

Lemma 3.4. After selecting n
s ln k

δ points uniformly at random, where s is the size of the
smallest good set, the probability that we did not choose a point from every good set is smaller
than 1− δ.

Proof. We denote by si the cardinality of Xi. Observe that the probability of not selecting a
point from some good set Xi after nc

s samples is (1− si
n )

nc
s ≤ (1− si

n )
nc
si ≤ (e−

si
n )

nc
si = e−c. By

the union bound the probability of not selecting a point from every good set after nc
s samples

is at most ke−c, which is equal to δ for c = lnk
δ .

Lemma 3.5. Given a subset of clusters C ⊆ C∗, and the set of the corresponding good sets
X, let smax = maxCi∈C |Ci| be the size of the largest cluster in C, and dmin = αw

60εsmax
. Then

for r ≤ 3dmin, a ball cannot overlap a good set Xi ∈ X and any other good set, and a ball
containing points from a good set Xi ∈ X cannot share any points with a ball containing points
from any other good set.
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Proof. By part 2 of Lemma 3.3, for x ∈ Xi and y ∈ Xj 6=i we have

d(x, y) >
αw

5ε
/ min(|C∗

i |, |C∗
j |).

It follows that for x ∈ Xi ∈ X and y ∈ Xj 6=i we must have d(x, y) > αw
5ε / min(|C∗

i |, |C∗
j |) ≥

αw
5ε /|C∗

i | > αw
5ε /smax = 12dmin, where we use the fact that |Ci| ≤ smax. So a point in a good

set in X and a point in any other good set must be farther than 12dmin.
To prove the first part, consider a ball Bl of radius r ≤ 3dmin around landmark l. In

other words, Bl = {s ∈ S | d(s, l) ≤ r}. If Bl overlaps a good set in X and any other
good set, then it must contain a point x ∈ Xi ∈ X and a point y ∈ Xj 6=i. It follows that
d(x, y) ≤ d(x, l) + d(l, y) ≤ 2r ≤ 6dmin, giving a contradiction.

To prove the second part, consider two balls Bl1 and Bl2 of radius r ≤ 3dmin around
landmarks l1 and l2. Suppose Bl1 and Bl2 share at least one point: Bl1 ∩Bl2 6= ∅, and use s∗ to
refer to this point. It follows that the distance between any point x ∈ Bl1 and y ∈ Bl2 satisfies
d(x, y) ≤ d(x, s∗) + d(s∗, y) ≤ [d(x, l1) + d(l1, s∗)] + [d(s∗, l2) + d(l2, y)] ≤ 4r ≤ 12dmin.

If Bl1 overlaps with Xi ∈ X and Bl2 overlaps with Xj 6=i, and the two balls share at least
one point, there must be a pair of points x ∈ Xi and y ∈ Xj 6=i such that d(x, y) ≤ 12dmin,
giving a contradiction. Therefore if Bl1 overlaps with some good set Xi ∈ X and Bl2 overlaps
with any other good set, Bl1 ∩Bl2 = ∅.

Lemma 3.6. If T ≤ T ∗ = αw
40ε and the number of clustered points is at least n − b, then the

clustering output by Landmark-Clustering-Min-Sum using the threshold T must be a k-clustering
that contains a distinct good set in each cluster.

Proof. Our argument considers the points that are in each cluster that is output by the algo-
rithm. Let us call a good set covered if any of the clusters C1, . . . , Ci−1 found so far contain
points from it. We will use C̄∗ to refer to the clusters in C∗ whose good sets are not covered.
It is critical to observe that if T ≤ T ∗ then if Ci contains points from an uncovered good set,
Ci cannot overlap with any other good set.

To see this, let us order the clusters in C̄∗ by decreasing size: |C∗
1 | ≥ |C∗

2 | ≥ . . . |C∗
j |, and

let ni = |C∗
i |. As before, define di = αw

60ε|C∗
i |

. Applying Lemma 3.5 with C̄∗ we can see that for
r ≤ 3d1, a ball of radius r cannot overlap a good set in C̄∗ and any other good set, and a ball
containing points from a good set in C̄∗ cannot share any points with a ball containing points
from any other good set. Because T ≤ T ∗ we can also argue that by the time we reach r = 3d1

we must output some cluster.
Given this observation, it is clear that the algorithm can cover at most one new good set

in each cluster that it outputs. In addition, if a new good set is covered this cluster may not
contain points from a previously covered good set. If the algorithm is able to cluster at least
n− b points, it must cover every good set because the size of each good set is larger than b. So
it must report k clusters where each cluster contains points from a distinct good set.
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Figure 3.2: Comparing the performance of k-means in the embedded space
(light gray), Landmark-Clustering (gray), and Landmark-Clustering-Min-Sum
(black) on 10 data sets from Pfam. Data sets 1-10 are created by uniformly at
random choosing 8 families from Pfam of size s, 1000 ≤ s ≤ 10000.

3.4 Empirical Study

We present some preliminary results of testing our Landmark-Clustering-Min-Sum algorithm on

protein sequence data. We use the same data sets as in Section 2.5, and compare with the same

algorithms. We also show the results of the Landmark-Clustering algorithm from Chapter 2 on

these data, and use the same number of distance queries for both limited information algorithms

(30k landmarks/queries for each data set, where k is the number of clusters).

In order to run Landmark-Clustering-Min-Sum we need to set the parameter T . Because

in practice we do not know its correct value, we use increasing estimates of T until we cluster

enough of the points in the data set; this procedure is similar to the algorithm for the case

when we don’t know the optimum objective value OPT and hence don’t know T . As before, in

order to compare a computationally derived clustering to the one given by the gold-standard

classification, we use the distance measure from the theoretical part of our work.

Figure 3.2 shows the results of our experiments on the Pfam data sets. We can see that
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Figure 3.3: Comparing the performance of spectral clustering (light gray),
Landmark-Clustering (gray), and Landmark-Clustering-Min-Sum (black) on 10
data sets from SCOP. Data sets A and B are the two main examples from
Paccanaro et al. [PCS06], the other data sets (1-8) are created by uniformly at
random choosing 8 superfamilies from SCOP of size s, 20 ≤ s ≤ 200.

Landmark-Clustering-Min-Sum outperforms k-means in the embedded space on each data set.

However, it does not perform better than the original Landmark-Clustering algorithm on most

of these data sets. When we investigate the structure of the ground truth clusters in these data

sets, we see that the diameters of the clusters are roughly the same. When this is the case the

original algorithm will find accurate clusterings as well. Still, Landmark-Clustering-Min-Sum

tends to give better results when the original algorithm does not work well (data sets 7 and 9).

Figure 3.3 shows the results of our computational experiments on the SCOP data sets.

We can see that the three algorithms are comparable in performance here. These results are

encouraging because the spectral clustering algorithm significantly outperforms other clustering

algorithms on these data [PCS06]. Moreover, the spectral algorithm needs the full distance

matrix as input and takes much longer to run. When we examine the structure of the SCOP data

sets, we find that the diameters of the ground truth clusters vary considerably, which resembles

the structure implied by the (c, ε)-property for the min-sum objective function, assuming that

the target clusters vary in size. Still, most of the time the product of the cluster sizes and their

diameters varies, so it does not quite look like what we assume in the theoretical part of this
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work.

We plan to conduct further studies to find data where clusters have different scale and

there is an inverse relationship between cluster sizes and their diameters. This may be the case

for data that have many outliers, and the correct clustering groups sets of outliers together

rather than assigns them to arbitrary clusters. The algorithm presented in this chapter will

consider these sets to be large diameter, small cardinality clusters. More generally, Landmark-

Clustering-Min-Sum is more robust because it will give an answer no matter what the structure

of the data is like, whereas the Landmark-Clustering algorithm from Chapter 2 often fails to

find a clustering if there are no well-defined clusters in the data.
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Chapter 4

Network Analysis

In this chapter we describe our techniques for locally exploring networks. Instead of performing

a computation on the entire network our algorithms consider a small part of the graph close

to a specified vertex. This approach allows our methods to be very efficient while still giving

meaningful information about the local structure of the graph.

This chapter is organized as follows. Section 4.1 gives an overview of our tools to locally

explore networks, which find the local community and the nearest neighbors of a queried node

in a network input by the user. Sections 4.2, 4.3, and 4.4 describe the algorithms that these

tools implement. We conduct a thorough experimental study to show that our methods give

meaningful results when applied to protein networks, which is summarized in Section 4.5.

Section 4.6 describes Alpha-Centrality, which is another technique that can be used to explore

a network, and gives an algorithm to approximate it that can be used on very large networks.

Finally, Section 4.7 gives an application of Alpha-Centrality to local search, and contrasts it

with PageRank.

4.1 Tools to Locally Explore Networks

Based on the techniques described in the following sections, we build tools that allow users to

locally explore protein networks and other networks input by the user. The networks can be

constructed from a vast amount of PPI data available from BioGRID [SBR+06], or manually

input by the user. The user can choose a network from BioGRID by selecting an organism and a

set of interaction types, or upload a custom (undirected) network, which may be weighted. The

applications are available through a Web interface and can also be downloaded as command-line

programs in the form of single-file Java executables.

Our first tool, named Local Protein Community Finder, is accessible at

http://xialab.bu.edu/resources/lpcf. This application uses the Nibble algorithm described in

http://xialab.bu.edu/resources/lpcf
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(a) Setting the input (b) Visualizing the output

Figure 4.1: Local Protein Community Finder User Interface

Section 4.3, and finds a high-quality community close to the queried vertex.1 In addition to en-

tering the starting vertex, one can also select the desired cluster size, and whether the reported

cluster must contain the starting vertex. The program takes only a few seconds to run, and

generates an image of the returned cluster, as well as annotation of the found proteins (Figure

4.1). In addition, the found community can be displayed in VisANT [HHW+09], a popular pro-

tein interaction viewer. The other tool, named Protein Network Neighbor Search, is accessible

at http://xialab.bu.edu/resources/pnns. It implements the ApproximatePR-Affinity algorithm

described in Section 4.4.1, and quickly returns a list of nodes sorted by their approximate

PageRank Affinity to the queried vertex.

4.2 Methods Background

We model a protein network as an undirected, unweighted graph where the nodes are the

proteins, and two nodes are connected by an edge if the corresponding proteins are annotated

as interacting with each other.
1Our tool also implements the PageRank-Nibble algorithm from [ACL06], and returns the cluster of lower

conductance.

http://xialab.bu.edu/resources/pnns
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4.2.1 Graph Representation

Formally, a graph is given by a set of vertices V and a set of edges E. We use n to refer to the

number of nodes in the graph. The degree of a node u ∈ V , denoted by d(u), is the number

of nodes adjacent to u. A graph is often represented by its adjacency matrix. The adjacency

matrix of a graph G = (V,E) is defined by

A(u, v) =

 1 if (u, v) ∈ E

0 otherwise.

4.2.2 Random Walks

We can learn a lot about the structure of a graph by taking a random walk on it. A random

walk is a process where at each step we move from some node to one of its neighbors. The

transition probabilities are given by edge weights, so in the case of an unweighted network

the probability of transitioning from u to any adjacent node is 1/d(u). Thus the transition

probability matrix (often called the random walk matrix) is the normalized adjacency matrix

where each row sums to one:

W = D−1A.

Here the D matrix is the degree matrix, which is a diagonal matrix given by

D(u, v) =

 d(u) if u = v

0 otherwise.

In a random walk it is useful to consider a probability distribution vector p over all the

nodes in the graph. Here p is a row vector, where p(u) is the probability that the walk is at

node u, and
∑

u∈V p(u) = 1. Because we transition between nodes with probabilities given by

W , if pt is the probability distribution vector at time t, then pt+1 = ptW .

In our methods we consider walks that start from a single vertex. We will denote by eu the

probability distribution vector that has all of its probability in vertex u, defined as follows:
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eu(i) =

 1 if i = u

0 otherwise.

4.2.3 Conductance

Conductance measures proportion of outgoing edges of a set of nodes in the graph. Given a

graph G = (V,E), and a subset of vertices S ∈ V , let us call the edge boundary of S the

collection of edges with one point in S and the other outside of S:

∂(S) = {{x, y} ∈ E | x ∈ S, y /∈ S}.

Let us also define the volume of S to be the sum of the degrees of its nodes:

vol(S) =
∑
x∈S

d(x).

The conductance of S is then defined as the ratio of the size of its edge boundary to the volume

of the smaller side of the partition:

Φ(S) =
|∂(S)|

min(vol(S), vol(S̄))
.

The lower the conductance, the better the cluster. Notice that a cluster can have low

conductance without being dense.

4.2.4 PageRank

If we modify the random walk to reset at each step with nonzero probability α, it will have a

unique steady-state probability distribution. This steady-state distribution, which is known as

a PageRank vector, is useful because it tells us how much time we will spend at each vertex

in a very long random walk on the graph. For starting vector s, and reset probability α, the

PageRank vector prα(s) is the unique solution of the linear system

prα(s) = αs + (1− α)prα(s)W. (4.1)

The s vector specifies the probability distribution for where the walk transitions when it
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resets. The original PageRank algorithm used a uniform starting vector (s = 1
n
~1), which gives

the global PageRank of each vertex [PBMW98, BP98]. PageRank with non-uniform starting

vectors is known as personalized PageRank, and has been used in context-sensitive search on

the Web [FR04, JW03].

We can also verify that a PageRank vector can be expressed as a weighted average of random

walk vectors [ACL06]:

prα(s) = α
∞∑

t=0

(1− α)t(sW t). (4.2)

Here the sW t term gives the probability distribution of the random walk after t steps.

Equation 4.2 shows that the PageRank computation is linear with respect to the starting

vector. In other words, prα(s1) + prα(s2) = prα(s1 + s2), and c · prα(s) = prα(c · s).

In our work we always use starting vectors that have all of their probability in a single

vertex, denoted by prα(eu). This vector is the steady-state probability distribution of a walk

that always returns to u at restart, and we will refer to it as the personalized PageRank vector

of this vertex.2 We will use prα(eu)[v] to denote the amount of probability that v has in prα(eu),

and use a shorthand of pr(u → v) for this quantity, dropping the α in the subscript because in

our computations it is always fixed. Because the PageRank computation is linear with respect

to the starting vector, the global PageRank of v, denoted by PR(v), satisfies

PR(v) =
1
n

∑
u

pr(u → v). (4.3)

Thus pr(u → v) can be thought of as the contribution that u makes to the PageRank of v. We

can also use Equation 4.2 to derive a more intuitive definition of pr(u → v):

pr(u → v) = prα(eu)[v] = α
∞∑

t=0

(1− α)tW t(u, v). (4.4)

Here the W t(u, v) term gives the probability of being at vertex v in t steps, given that the

walk starts at u.
2A personalized vector generally refers to a non-uniform vector, but here we use this term to refer to a vector

which is non-zero in exactly one entry.
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4.3 Nibble

Nibble, the local clustering algorithm of Spielman and Teng [ST08], works by conducting a lazy

random walk from the starting vertex, and checking the probability distribution vector after

each transition for a cluster of low conductance. It is described more formally below.

Algorithm 4.1 Nibble(G, v, ε, tlast)
1: p0 = ev, φ = 1, C = ∅
2: for t = 1 to tlast do
3: pt = Mpt−1

4: pt = [pt]ε
5: C ′ = Sweep(pt)
6: if Φ(C ′) < φ then
7: φ = Φ(C ′)
8: C = C ′

9: end if
10: end for
11: return C

The algorithm maintains a probability distribution vector p over the nodes in the graph,

initially with p0 = ev, which has all of its probability in v. In each iteration we set pt = Mpt−1,

where M is the lazy random walk transition probability matrix, and look for a cluster of low

conductance by performing a “sweep” of pt. Nibble iterates for tlast steps, and outputs the

cluster with the lowest conductance over all iterations.

A sweep is a technique for producing a cut (partition) from a probability distribution vector.

Given a vector p, we first order vertices by degree-normalized probability: let v1, . . . , vn be an

ordering of the vertices such that p(vi)/d(vi) ≥ p(vi+1)/d(vi+1). We then consider sets of

vertices v1 through vj in this order, which we call the sweep sets. Here j ranges from 1 to the

number of vertices with non-zero probability in them. For each sweep set Sp
j = {v1, . . . , vj} we

compute its conductance Φ(Sp
j ), and report the cluster with lowest conductance.

Nibble uses the truncation operation p = [p]ε, which sets p(v) = 0 for every vertex v such

that p(v) < εd(v). We only consider vertices that have non-zero probability in them when

performing the random walk and performing a sweep. Therefore we can control the runtime of

the algorithm and the number of vertices that it can explore by adjusting the ε parameter.
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4.4 PageRank Affinity

For two vertices u and v we define their PageRank Affinity to be the minimum of the PageRank

that u contributes to v and v contributes to u:

pr-aff(u, v) = min(pr(u → v),pr(v → u)).

This quantity can be computed by solving the PageRank equation for prα(eu) and prα(ev),

and reporting the minimum of the two PageRank contributions. The restart probability of

the random walk (α) must be greater than 0 to ensure that prα(eu) and prα(ev) have unique

solutions, and must be much smaller than 1 to prevent the random walk from returning too often

to the starting vertex and being too local. We set α to 0.15, which is typical for computations

of PageRank.

4.4.1 Approximating PageRank Affinity

We can also use approximate PageRank to compute closeness between nodes. While it is possi-

ble to compute exact PageRank vectors for smaller graphs by solving the PageRank equation,

it is computationally infeasible to do this for larger networks. To calculate approximate PageR-

ank, we use the ApproximatePR algorithm from Andersen, Chung, and Lang [ACL06], which

computes an ε-approximate PageRank vector for a random walk with restart probability α in

time O( 1
εα) = O(1

ε ) if α is constant.

We develop an algorithm that approximates PageRank Affinity, which uses ApproximatePR

as a subroutine. Our ApproximatePR-Affinity algorithm takes a queried vertex v, approxima-

tion parameter ε, and integer k as input, and returns the k nodes with highest approximate

PageRank Affinity to v in the graph. The algorithm is outlined below.
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Algorithm 4.2 ApproximatePR-Affinity(v, ε, k)
p̃r(ev) = ApproximatePR(v, ε)
for each u do

p̃r(v → u) = p̃r(ev)[u]
end for
for each u do

p̃r(u → v) = p̃r(v → u) d(v)
d(u)

end for
for each u do

affinity(u) = min(p̃r(u → v), p̃r(v → u))
end for
return k vertices with highest affinity scores

We first compute an approximate personalized PageRank vector of v, denoted by p̃r(ev), to

approximate the amount of PageRank that v gives to each vertex u, denoted by p̃r(v → u). We

then use the observation that for undirected graphs

pr(u → v) = pr(v → u)
d(v)
d(u)

,

to approximate the PageRank contribution of each vertex in the graph to v. We then calculate

the affinity to v of each vertex u as min(p̃r(u → v), p̃r(v → u)), and return the k nodes with

highest affinity values.

We can verify that the runtime of this procedure is O(k
ε ) and the amount of error in the

affinity of vertices u and v, denoted by ˜pr-aff(u, v), is at most the product of ε and the larger

of their degrees:

pr-aff(u, v) ≥ ˜pr-aff(u, v) ≥ pr-aff(u, v)− ε ·max(d(u), d(v)).

4.4.2 Relationship with Cluster Co-Membership

If u and v are in the same cluster, both pr(u → v) and pr(v → u) are likely to be high. It is

proved in [ACL06] that for any set C, there is a subset of vertices C ′ ⊆ C, such that for any

vertex u ∈ C ′, the personalized PageRank vector of u, denoted by prα(eu), satisfies
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∑
v∈C

prα(eu)[v] ≥ 1− Φ(C)
α

.

In other words, pr(u → v) = prα(eu)[v] is high on average if u and v are in the same good

(low-conductance) cluster C and u ∈ C ′. Moreover, the set C ′ is large, as the sum of degrees

of its nodes, denoted by vol(C ′), satisfies vol(C ′) ≥ vol(C)/2.

4.5 Empirical Study on Protein Networks

We conduct a series of computational experiments to determine whether our methods for locally

exploring networks are successful at finding functionally related proteins in PPI networks, and

compare their effectiveness to other techniques. To validate our methods we use a gold-standard

listing of functional units, and a reliable measure of functional similarity, which is described in

the next section. Section 4.5.2 describes the protein networks that we use in our study, and the

results of our experiments follow in Section 4.5.3.

4.5.1 Measuring Functional Distance

In order to compute functional distances for pairs of proteins, we use functional distances from

Yu et al. [YJG07]. These values are derived using the Gene Ontology (GO) Process classification

scheme, where functional-distance(a, b) is the number of gene pairs that share all of the least

common ancestors of a and b in the classification hierarchy. A low functional distance score

means that two proteins are more functionally related, because there are few protein pairs that

have the same functional relationship.

The functional distance measure of Yu et al., which the authors refer to as the “total ancestry

measure for GO,” has the obvious advantage that it considers all known functions of a pair of

proteins, allowing for a great degree of precision in assessing functional similarity. Moreover,

unlike other methods that derive distances from the GO classification scheme, this method is

very resilient to rough functional descriptions, because it still assigns low distances to pairs of

proteins that only share very broad terms, as long as there are few other protein pairs that

share all of those terms.

Functional distances from Yu et al. [YJG07] can be quite large, yet differences in scores at
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the low end are more significant than differences at the high end, which is why we take the

logarithm in our calculations:

d(a, b) = log10(functional-distance(a, b))

4.5.2 The Protein Networks

The protein interaction data that we use in our study is from BioGRID [SBR+06], Versions

2.0.44 and 2.0.53. BioGRID lists interacting protein pairs, and for each pair gives the experi-

mental method used to observe the interaction, as well as the source that submitted it. In our

study we use several yeast protein-protein interaction (PPI) networks formed from interactions

detected by different methods.

Two of the networks, where protein interactions are detected from bait-and-prey type ex-

periments are Affinity Capture Western (referred to as AC-Western), and Affinity Capture

MS (AC-MS). These networks tend to be much more cliquish and contain dense components,

which is due to the nature of the experiment used to detect the interactions. A single protein

(bait) is used to pull in a set of other proteins (prey), and an interaction is predicted either

between the bait and each prey (the spoke model), or between every protein in the group (the

matrix model) [HDB+05]. We also use Two-Hybrid data in our study. Two-Hybrid methods

detect binary interactions, therefore PPI networks based on Two-Hybrid data tend to be less

dense and cliquish than ones derived from Affinity Capture experiments.

In addition to using a network formed from the union of all Two-Hybrid interactions

listed in BioGRID (Two-hybrid), we also consider a subset of this data submitted by Yu

et al. [YBY+08] (Two-hybrid-2). This network is sparser, but is believed to be of higher

quality. We use this network in some of our experiments if the other results are inconclusive.

4.5.3 Results

We evaluate the biological significance of PageRank Affinity in protein networks and compare

it to other graph-theoretic measures of closeness, which are summarized below.

• Shortest Path ranks node pairs by shortest path distance; we use the multiplicity of the
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shortest path to break ties between pairs that are the same distance apart.

• Common Neighbors ranks node pairs by how many direct neighbors they share in the

network. Pairs with more neighbors in common are ranked higher than pairs with fewer

shared neighbors.

• Cliques ranks node pairs that are part of a larger clique higher than pairs that are part

of a smaller clique. We find all maximal cliques to compute this measure, but we can

evaluate the closeness of only a small number of node pairs because most pairs are not

part of any clique.

• Partitioning ranks node pairs that are part of a denser cluster higher than pairs that are

part of a less dense cluster. To cluster the network we use Metis, a partitioning algorithm

that finds high-quality clusters in the graph [AK06]. As with Cliques, we can evaluate the

closeness of only a small number of pairs because most node pairs do not share a cluster.

To calculate the PageRank Affinity of all pairs of nodes in a network, we compute a person-

alized PageRank vector of each vertex, and then calculate a PageRank Affinity score for each

pair from their personalized PageRank vectors. In order to evaluate the output of our neigh-

borhood search tool, in each network we also calculate the Approximate PageRank Affinity of

protein pairs by running the ApproximatePR-Affinity algorithm from each vertex.

We first consider how well our measure of closeness reflects functional ties given by a gold-

standard manual classification of protein complexes in Mewes et al. [MAA+04]. Figures 4.2, 4.3,

and 4.4 displays the results as a ROC curve. We divide all protein pairs in each network in our

study into positives and negatives, the positives are protein pairs that are co-complexed, and

the negatives are all other pairs. We use T to refer to the number of positives and N to refer

to the number of negatives. We then rank protein pairs by each measure of closeness. Each

measure is evaluated by the number of true positives and false positives in a particular percentile

of the ranking, where the true positives are the positive pairs and the false positives are

the negative pairs. We use TP to refer to the number of true positives and FP to refer to the

number of false positives. In each figure the x-axis lists the false positive rate, which is defined

as FP/N, and the y-axis lists the true positive rate, which is defined as TP/T. Lines of different
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Figure 4.2: Which measure of closeness is best at predicting co-complex mem-
bership? The results for the Two-hybrid network.

shades of gray are used to represent the results for the different measures compared. The ROC

curves are produced by considering proteins pairs in the top 0.01%, 0.1%, 0.5%, 1%, 3% and

5% of each closeness ranking. A measure that has a higher true positive rate for the same false

positive rate is better.

We can see from Figure 4.2 that in the Two-hybrid network PageRank Affinity predicts

co-complex pairs better than other measures. The same is true for the AC-Western network,

although the contrast with other measures of closeness is smaller (Figure 4.3). The picture is

different for the AC-MS network, as Common Neighbors and Shortest Path are as effective as

PageRank Affinity at predicting co-complex pairs (Figure 4.4). We also note that in all three

networks we do not lose much by approximating PageRank Affinity rather than computing it

exactly.

We also use functional distance data to evaluate the meaning of our closeness measure in

protein networks. In each PPI network in our study, we rank protein pairs by PageRank Affinity

and other measures of closeness, and average the functional distances of the protein pairs in the
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Figure 4.3: Which measure of closeness is best at predicting co-complex mem-
bership? The results for the AC-Western network.
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Figure 4.4: Which measure of closeness is best at predicting co-complex mem-
bership? The results for the AC-MS network.
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Figure 4.5: Which measure of closeness best correlates with functional dis-
tance? The results for the Two-hybrid network.

top k percent of each closeness ranking, for different values of k. The results are presented in

Figures 4.5, 4.6, and 4.7. Bars of different shades of gray are used to represent the results for

the different closeness measures compared. The x-axis lists different percentiles of the closeness

rankings, and the y-axis displays the average functional distance of protein pairs in the top

percentile of a particular ranking. Lower values indicate measures that are more biologically

meaningful. The average functional distance of two proteins in the genome is 5.8. We can

see that in all three networks protein pairs with high PageRank Affinity are more functionally

related (have smaller functional distances). Once again, Approximate PageRank Affinity is

almost as biologically meaningful, significantly outperforming other measures.

Our conclusion is that we can learn a lot about the functional relationships of proteins by

considering PageRank Affinity in a PPI network. Protein pairs with high PageRank Affinity are

much more likely to be functionally related, as evidenced by membership in the same protein

complex and low functional distance.
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Figure 4.6: Which measure of closeness best correlates with functional dis-
tance? The results for the AC-Western network.
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Figure 4.7: Which measure of closeness best correlates with functional dis-
tance? The results for the AC-MS network.
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We perform additional experiments to determine whether our local clustering technique is

relevant in protein networks. We evaluate the performance of Nibble and other partitioning

algorithms by the graph-theoretic quality of the found clusters and their functional coherence.

In a protein network represented by a graph G = (V,E) we define the functional coherence of

a cluster C to be the difference between the average functional distance of two proteins in the

network and the average pairwise functional distance of proteins in the cluster:

functional-coherence(C) =

∑
u 6=v∈V d(u, v)
|V |(|V | − 1)

−
∑

u 6=v∈C d(u, v)
|C|(|C| − 1)

.

To compare the performance of the clustering algorithms, we run all of them from the same

set of nodes in each PPI network, and record the conductance and functional coherence of the

found clusters. We then average the statistics of every algorithm in each network, and report

the standard error to see if the differences are statistically significant. In order to compare

global algorithms to local ones, when we use a global clustering algorithm we partition the

entire network once, and for starting vertex s consider the cluster containing s. Figures 4.8 and

4.9 display the results of our computational experiments. The algorithms compared are listed

along the x-axis, the y-axis specifies the average conductance/functional coherence of clusters

found by each algorithm. Bars of different shades of gray are used to represent the results for

the four protein networks in which the computational experiments are performed. We can see

that Nibble finds clusters of better conductance in all four of the networks. In addition, in three

of the four networks Nibble finds communities that are more functionally coherent.

4.6 Alpha-Centrality

Alpha-Centrality was proposed by Bonacich [Bon87] to generalize eigenvector centrality to

cases when some nodes do not have any in-neighbors. Given an attenuation parameter α and a

starting vector s, the Alpha-Centrality vector crα(s) is the solution to the following equation:

crα(s) = s + α · crα(s)A. (4.5)

Solving this equation we can see that crα(s) = s(I − αA)−1, where I is the n by n identity

matrix. Using the identity
∑∞

t=1 αtAt = (I − αA)−1 − I, we can see that
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Figure 4.8: Average conductance of clusters found by each algorithm, lower
values indicate better clusters.
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higher values indicate more functionally coherent clusters.
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crα(s) = s(I − αA)−1

= s(
∑∞

t=1 αtAt + I)

= s
∑∞

t=1 αtAt + s

= s
∑∞

t=0 αtAt.

(4.6)

We can verify that At(u, v) gives the number of paths of length t between u and v. In order

to compute the global centrality scores we set s = ~1. Therefore, the centrality of node v is given

by the number of paths from u to v for all u ∈ V , with longer paths given less weight based on

the value of α.

4.6.1 Approximating Alpha-Centrality

In order to compute the exact Alpha-Centrality vector we have to solve Equation 4.5, which

requires us to compute a matrix inverse. Computing a matrix inverse takes O(n3) time, so

this is infeasible for large networks. One way to compute an approximate solution is to use the

alternate formulation given in Equation 4.6, and compute s(I+αA+α2A2+α3A3+. . .), until the

αi coefficient grows sufficiently small. While this technique is effective in practice, computing

Ai in each iteration must take at least n2 time, and it is not clear how many iterations we

need to get a good approximation. In this section we present an algorithm for approximating

Alpha-Centrality, which has a single parameter that controls both the runtime and the quality

of the produced approximation.

A description of our algorithm is given in Algorithm 4.3. Our procedure is similar to the

algorithm for approximating PageRank that is given by Andersen, Chung, and Lang [ACL06].

Our algorithm takes the network, the starting vector s, α, and an approximation parameter δ

(0 < δ ≤ 1) as input, and computes an approximate Alpha-Centrality vector where each entry

has error of at most δ (see Theorem 4.1).

In order to approximate a centrality vector with starting vector s, we maintain an approxi-

mate centrality vector c̃r and a residual vector r. Initially r is equivalent to the staring vector

s; the algorithm iteratively moves content from r to c̃r until each entry in r is small. We give

a proof that throughout the execution of the algorithm the error in the approximate centrality

vector is the amount of content remaining in the residual vector.
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Algorithm 4.3 Approximate-Centrality(V,E, s, α, δ)
1: ε = δ||s||1/n;
2: r = s;
3: Queue q = new Queue();
4: for each u ∈ V do
5: c̃r(u) = 0;
6: if r(u) > ε then
7: q.add(u);
8: end if
9: end for

10: while q.size() > 0 do
11: u = q.dequeue();
12: c̃r(u) = c̃r(u) + r(u);
13: T = α · r(u);
14: r(u) = 0;
15: for each v ∈ N(u) do
16: r(v) = r(v) + T · w(u, v);
17: if !q.contains(v) and r(v) > ε then
18: q.add(v);
19: end if
20: end for
21: end while
22: return c̃r;

We assume that the graph may be directed and weighted, and use w(u, v) to denote the

weight of the edge from u to v. We use N(u) to refer to the out-neighbors of u: N(u) =

{v ∈ V |(u, v) ∈ E}. In addition, we use dout(u) to specify the out-degree of u: dout(u) =∑
v∈N(u) w(u, v), and use dmax to refer to the maximum out-degree of any node in the graph.

We next give our formal performance guarantee for Algorithm 4.3.

Theorem 4.1. Given an α ≤ c
dmax

for some c < 1 and a uniform starting vector s, the vector
c̃r output by Approximate-Centrality satisfies [cr(s)](u) ≥ c̃r(u) ≥ [cr(s)](u)(1 − δ) for each
vertex u ∈ V . The runtime of the algorithm is O(n

δ dmax).

4.6.2 Algorithm Analysis

We next give our proof of Theorem 4.1. Our arguments depend on the linearity of the Alpha-

Centrality computation with respect to the starting vector, which is easy to verify. From
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Equation 4.6 we can see that crα(s1) + crα(s2) = crα(s1 + s2), and c · crα(s) = crα(c · s).

When the α parameter is fixed, we use cr(s) to denote crα(s). We will also use [cr(s)](u) to

refer to how much content vertex u has in cr(s).

Proof. Lemma 4.2 argues that c̃r = cr(s − r) = cr(s) − cr(r) throughout the execution of the
algorithm, so we have c̃r(u) = [cr(s)](u) − [cr(r)](u) for all vertices u ∈ V . Given a uniform
starting vector s, s(u) = ||s||1/n for all u ∈ V . The algorithm terminates when r(u) ≤ ε for
all u ∈ V , so we choose ε = δ · ||s||1/n = δs(u) such that upon completion r(u) ≤ δs(u) for all
u ∈ V .

Clearly, [cr(s)](u) ≥ c̃r(u) because r and cr(r) are non-negative. We can also show that
given that r(u) ≤ δs(u) for all u ∈ V , [cr(r)](u) ≤ δ[cr(s)](u) for all vertices u ∈ V . It
follows that c̃r(u) = [cr(s)](u)− [cr(r)](u) ≥ [cr(s)](u)(1− δ). Therefore we can see that indeed
[cr(s)](u) ≥ c̃r(u) ≥ [cr(s)](u)(1− δ) for all vertices u ∈ V .

We assume that α is chosen such that α ≤ c
dmax

for some constant c < 1, where dmax

is the largest out-degree of any node in the graph. In order to bound the runtime of the
algorithm, consider that each iteration of the while-loop decreases the sum of the entries of r by
(1−α·dout(u))r(u) > (1−α·dout(u))ε ≥ (1−α·dmax)ε ≥ (1−c)ε. Because r = s at initialization
and each iteration decreases ||r||1 by at least (1 − c)ε, the number of iterations i must satisfy
i(1− c)ε ≤ ||s||1. Therefore the number of iterations may be at most ||s||1

(1−c)ε = O(||s||1/ε). The
cost of each iteration is proportional to the out-degree of the node that is dequeued, so the
worst-case runtime of the algorithm is O(||s||1/ε · dmax). For our choice of ε this is equivalent
to O(n

δ dmax).

Lemma 4.2. The invariant c̃r = cr(s− r) is maintained throughout the execution of the while-
loop.

Proof. Before the loop starts, we have r = s and c̃r = ~0, so cr(s − r) = cr(~0) = ~0 = c̃r. We
can also show that if c̃r = cr(s− r) holds prior to an iteration of the loop, then c̃r′ = cr(s− r′)
is still true after the iteration, where c̃r′ and r′ are the updated approximate centrality and
residual vectors.

We first observe that cr(s)A = cr(sA). To see this, consider that by definition cr(s) =
s + α · cr(s)A. Multiplying this equation by A we get cr(s)A = sA + α · (cr(s)A)A. This shows
that cr(s)A is by definition a centrality vector for starting vector sA. Moreover, we know that
the solution to cr(sA) is unique, so we have cr(s)A = cr(sA). This observation shows that we
can iteratively compute the centrality vector by expressing cr(s)A as cr(sA).

We will write the operations performed inside the while-loop using vector-matrix notation.
We use eu to denote a row vector that has all of its content in vertex u:

eu(i) =

{
1 if i = u

0 otherwise.
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After an iteration of the loop we have c̃r′ = c̃r + r(u)eu, and r′ = r − r(u)eu + αr(u)euA,
where u is the vertex that is dequeued in line 11. We next specify the relationship between
the approximate centrality and residual vectors before and after an iteration of the while-loop.
Consider that

cr(r) = cr(r − r(u)eu) + cr(r(u)eu)
= cr(r − r(u)eu) + r(u)eu + α · cr(r(u)eu)A
= cr(r − r(u)eu) + r(u)eu + α · cr(r(u)euA)
= cr(r − r(u)eu) + r(u)eu + cr(αr(u)euA)
= cr(r − r(u)eu + αr(u)euA) + r(u)eu

= cr(r′) + c̃r′ − c̃r.

If c̃r = cr(s−r), we have cr(r) = cr(r′)+ c̃r′−cr(s−r). It follows that c̃r′ = cr(r)−cr(r′)+
cr(s− r) = cr(r − r′ + (s− r)) = cr(s− r′). This completes the proof.

4.7 Applications of Alpha-Centrality

We next show that Alpha-Centrality with personalized starting vectors can be used for local

search in a network, and give some examples that illustrate the difference between PageRank

and Alpha-Centrality.

4.7.1 Local Search

An Alpha-Centrality vector with a uniform starting vector gives a global centrality measure.

Let us denote by CR(v) the centrality of vertex v, which is the entry corresponding to v in

crα(~1).

We can also use Alpha-Centrality with personalized starting vectors to compute local cen-

trality vectors. As before, let eu denote a vector with a 1 in position u and zeroes everywhere

else:

eu(i) =

 1 if i = u

0 otherwise.

We can use the vector eu to compute a personalized centrality vector crα(eu). We denote

by [crα(eu)](v) the score of v in crα(eu), and use a shorthand notation of cr(u → v) for this

quantity. Equation 4.6 shows that the Alpha-Centrality computation is linear with respect to
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the starting vector. We can use this fact to show that indeed cr(u → v) gives the amount that

u contributes to the centrality of v:

CR(v) =
∑
u∈V

cr(u → v). (4.7)

Moreover, using Equation 4.6 we can rewrite cr(u → v) as:

cr(u → v) = [crα(eu)](v) =
∞∑

t=0

αtAt(u, v). (4.8)

The At(u, v) term in Equation 4.8 gives the number of paths of length t from u to v.

Therefore to compute cr(u → v) we consider the number of paths of all lengths between u

and v, with longer paths given less weight based on the value of α. In addition, Equation 4.8

shows that unlike PageRank contributions, Alpha-Centrality contributions are symmetric in

undirected networks: cr(u → v) = cr(v → u) if the adjacency matrix A is symmetric.

We can consider the centrality contribution cr(u → v) to be a measure of closeness between

vertices u and v. By computing crα(eu) we can calculate cr(u → v) for all vertices v in the

graph. This computation is feasible even for very large networks if we use Algorithm 4.3 to

approximate crα(eu). This approach gives us another meaningful way to efficiently find the

closest neighbors of a given vertex in a very large network. Even though the error analysis

presented in the previous section assumes that the starting vector is uniform, giving a similar

performance guarantee for personalized starting vectors can be the focus of future work.

4.7.2 Differences between PageRank and Alpha-Centrality

We conclude by giving some examples of the difference between the PageRank and Alpha-

Centrality computations. If both of these measures produce similar results in most networks,

then it is not important which one we use. However, we believe that it is not hard to find

examples where one computation gives different results than the other.

Consider the graph given in Figure 4.10. Here if we compare the global PageRank to the

global Alpha-Centrality ranking, we find that vertex 4 has the third highest PageRank, but the

highest Alpha-Centrality score (for all reasonable settings of α that were tested). The reason for

this discrepancy is that the PageRank of each vertex is proportional to how much it is visited
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Figure 4.10: Comparing global PageRank and Alpha-Centrality rankings.

in a very long random walk on the network. Vertex 4, which is in-between the two 3-cliques

in the graph, is not visited as often as vertices 3 and 5, so it has a lower PageRank. On the

other hand, vertex 4 has more short paths to the other nodes in the graph, so it has the highest

Alpha-Centrality. This example illustrates a general trend: nodes with highest PageRank tend

to be in densely connected subgraphs that have few outgoing edges because a random walk

that goes into these parts of the graph tends to stay there for a long time. On the other hand,

nodes with highest Alpha-Centrality have more short paths to other nodes in the network, so

they will be in the center of the network and may lie outside of the clusters.

We next give an example that shows the difference in computing personalized PageRank

and Alpha-Centrality vectors. Let us suppose that we want to compute the closeness of v to u

in graphs G1 and G2, whose subgraphs are shown in Figures 4.11a and 4.11b, using personalized

PageRank and Alpha-Centrality. We compute the PageRank contribution pr(u → v), and the

Alpha-Centrality contribution cr(u → v). Let’s assume that G2 is exactly the same as G1 other

than the additional edges that are shown, and that vertex u has no other neighbors than the

ones that are shown.

If we consider PageRank contributions, v is much closer to u in G1 than it is in G2. If we

look at the formulation of pr(u → v) in Equation 4.4, we can see that the value contributed to

pr(u → v) from paths of length 1 will be much larger in G1 than in G2. This is true because

W 1(u, v), which is the probability of being at v in one step given that the walk starts at u, is

much larger in G1 than in G2. Assuming that no short paths have been added between u and
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Figure 4.11: Comparing PageRank and Alpha-Centrality contributions.

v, and given that the weight of the paths decreases exponentially in their length (so paths of

longer length are worth a lot less), it’s likely that pr(u → v) is much larger in G1 than in G2.

On the other hand, if we consider centrality contributions, v is at least as close to u in G2

as it is in G1. If we look at the formulation of cr(u → v) in Equation 4.8, we can see that

the value of cr(u → v) in G2 must be at least as large as this quantity in G1. This is true

because no paths have been removed, so the number of paths from u to v of length k, which is

given by Ak(u, v), may only increase in G2 for every path length k. It does not matter that the

probability of taking some of these paths in a random walk (most notably the path of length 1

from u to v) has decreased significantly.

Whether we should use PageRank or Alpha-Centrality contributions to evaluate closeness

between nodes depends on the meaning of the edges in the network. Is v less close to u if u has a

lot of other neighbors? If the graph is a social network then perhaps the answer is yes, because

the more connections a person has, the less attention he/she can devote to each acquaintance.

However, if the links represent communication channels, then u can still broadcast to v no

matter how many other neighbors u has. Similarly, if the network is a protein network and

protein u can make many copies of itself, then the strength of the connection between u and v

does not depend on how many other proteins u interacts with.
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This simple example illustrates another critical difference between the computations of

PageRank and Alpha-Centrality contributions. Alpha-Centrality contributions are symmetric

in undirected networks (because a path from u to v is a path from v to u), so cr(u → v)

is equivalent to cr(v → u) in both graphs. However, PageRank contributions are often very

asymmetric, which is clearly illustrated in this example. In G2 the probability of visiting v

from u in a short random walk is likely much lower than the probability of visiting u from

v, so pr(u → v) is likely much smaller than pr(v → u). In order to make the computations

of pairwise closeness using PageRank contributions symmetric, we have proposed taking the

minimum of the two quantities, which in an undirected network corresponds to considering a

random walk from the larger-degree node to the smaller degree-node (see Section 4.4). So in

our example we would use pr(u → v) to evaluate the closeness of u and v in G2.
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