
Semi-Supervised Max-Sum Clustering
Konstantin Voevodski

Google, Cambridge, USA

kvodski@google.com

ABSTRACT
We study max-sum clustering in a semi-supervised setting. Our

objective function maximizes the pairwise within-cluster similar-

ity with respect to some null hypothesis regarding the similarity.

This is a natural objective that does not require any additional

parameters, and is a generalization of the well-known modularity

objective function. We show that for such an objective function in a

semi-supervised setting we can compute an additive approximation

of the optimal solution in the general case, and a constant-factor

approximation when the optimal objective value is large. The su-

pervision that we consider is in the form of cluster assignment

queries and same-cluster queries; we also study the setting where

the query responses are noisy. Our algorithm also generalizes to

the min-sum objective function, for which we can achieve similar

performance guarantees. We present computational experiments to

show that our framework is effective for clustering text data - we

are able to find clusterings that are close to the queried clustering

and have a good objective value.

CCS CONCEPTS
•Computingmethodologies→ Semi-supervised learning set-
tings; Cluster analysis.

KEYWORDS
semi-supervised learning, clustering, max-sum clustering, min-sum

clustering, modularity, text clustering

ACM Reference Format:
Konstantin Voevodski. 2020. Semi-Supervised Max-Sum Clustering. In Pro-
ceedings of the 29th ACM International Conference on Information and Knowl-
edge Management (CIKM ’20), October 19–23, 2020, Virtual Event, Ireland.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3340531.3411896

1 INTRODUCTION
Clustering is usually studied in an unsupervised setting where we

would like to assign a set of data points to clusters without any

information about the correct clustering. One way to approach

this problem is to define some objective function (or “score”) that

describes the qualify of the clustering, and then try to optimize

this objective. Two of the most commonly used objective functions

are the k-means and modularity objectives. However, they are both

known to be hard to optimize. The 𝑘-means objective is NP-hard

even for 𝑘 = 2 [13], and is hard to approximate in Euclidean space

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6859-9/20/10.

https://doi.org/10.1145/3340531.3411896

[5]. Modularity is NP-complete [11] and hard to approximate [12].

Therefore in practice both of these objectives are optimized by

algorithms with limited performance guarantees.

We may also approach clustering as a semi-supervised problem

where we are given some information regarding the correct cluster

assignments. We may think of the supervision as an oracle that
answers queries about the correct clustering. The supervision may

be in the form of high-level properties of the clustering, such as

split/merge requests (see Awasthi et al. [4], Awasthi and Zadeh

[6], Balcan and Blum [7]). It may also be in the form of information

about the individual data points, such as cluster assignments of

points [2] or same-cluster queries for pairs of points [3].

In practical settings semi-supervised approaches are easy to

motivate. Clustering is an under-specified task - in the unsupervised

setting depending on what clustering algorithm we run we may

get drastically different outputs. It is not clear which one is “good”

versus “bad”, and whether some (or any) of the clusterings can even

be used for the intended application. This ambiguity is resolved

in practice by searching for any prior knowledge about the data

points. We try to seek out domain experts (those very familiar with

the data) to provide any information about how some of the points

are clustered in a “good” clustering. Then this information is used

to choose a clustering output by one of the unsupervised methods.

Given this workflow, it is natural to first collect any prior knowledge

about the cluster assignments, and then consider a clustering task

given this information.

Semi-supervised approaches are especially relevant for cluster-

ing text data. Text clustering can be very challenging in the un-

supervised setting. For example, consider newspaper articles that

may be clustered according to topic, writing style, or the sentiment

of the writer. A limited amount of supervision is helpful to give

a clustering algorithm some idea about what a “good” clustering

looks like. On the other hand, it may be hard to collect enough

labeled data points required for a supervised learning algorithm,

especially if the number of clusters is large. In Section 4 we show

that our semi-supervised algorithm works well for clustering text

data - we are able to find fairly accurate clusterings using a limited

amount of supervision.

In order to design a semi-supervised clustering algorithm we

have to explicitly define what we mean by a correct clustering.
One approach is to simply say that the oracle is providing the

correct clustering, and assume that we have access to a similarity

function that is also consistent with this clustering [4, 6, 7]. Another

approach is to consider some clustering objective function, and

assume that the correct clustering is the one that optimizes this

objective. Ashtiani et al. [3] and Ailon et al. [1] study the latter

framework in the context of the 𝑘-means objective function.

Here we consider semi-supervised clustering in the context of

the max-sum objective function. Our objective function is the differ-

ence between the pairwise within-cluster similarity and some null

https://doi.org/10.1145/3340531.3411896
https://doi.org/10.1145/3340531.3411896

hypothesis regarding the similarity. The within-cluster similarity

and the null hypothesis are specified by non-negative functions 𝑓

and 𝑔, respectively. This is a natural objective that does not require

a predetermined number of clusters or any other parameters. It sim-

ply requires the clusters to be enriched for similarity with respect

to some null (default) similarity of limited interest. This objective

also generalizes the well-known modularity objective function (see

Section 2.1).

In order to further motivate our max-sum objective function,

observe that there may be several meaningful ways to define a

null hypothesis. We may define a null hypothesis from 𝑓 itself by

considering the average pairwise similarity, or represent the data

as a similarity graph and consider the degrees of the nodes (see

Section 2.1).Wemay also define 𝑓 and𝑔 independently of each other,

where 𝑔 may be used to incorporate additional domain knowledge

about the problem. For example, consider a computational biology

application where we are clustering proteins. We may want to

define 𝑓 in terms of physical protein interactions and𝑔 using known

functional annotations. Then optimizing our objective with 𝑓 and 𝑔

defined in this manner may give us clusters of physical interactions

that are not already annotated.

1.1 Our Results
We design approximation algorithms for max-sum clustering in a

semi-supervised setting. Given approximation parameters 𝛿 and 𝜖 ,

with probability at least 1 − 𝛿 , our algorithm outputs a clustering

with objective value at least 𝑂𝑃𝑇 − 3/4 · 𝜖𝑛2
, where 𝑂𝑃𝑇 is the ob-

jective value of the optimal clustering and 𝑛 is the number of points.

The algorithm requires only 𝑂 (𝜖−3
log

𝑘
𝜖𝛿

) cluster-assignment ora-

cle queries, where 𝑘 is the number of clusters in the optimal clus-

tering. This algorithm may also be modified to use 𝑂 (𝑘𝜖−3
log

𝑘
𝜖𝛿

)
same-cluster oracle queries.

We also consider the setting where the oracle response may be

incorrect with probability 𝛼 (see Section 2). In this noisy setting

we show that with probability at least 1 − 𝛿 , our algorithm outputs

a clustering with expected objective value at least 𝑂𝑃𝑇 − 3/4 ·
𝜖𝑛2 − 4𝛼𝑛2

. The number of cluster-assignment queries required

by the algorithm remains unchanged. We further show that our

approach generalizes to the min-sum objective, for which we can

obtain similar performance guarantees.

Our theoretic analysis for the max-sum objective is most relevant

when 𝑂𝑃𝑇 = Ω(𝑛2). This may be the case when we are clustering

with a similarity function - in particular when we are clustering

text (see Basu et al. [9]) or biological data (see Voevodski et al. [24]).

This may also be the case when we are clustering dense graphs

(see Greene et al. [19] and Wang et al. [25]) or dense subsets of

sparse graphs. In such scenarios we can compute a constant-factor

approximation of the optimal solution using only 𝑂 (log𝑘
𝛿
) cluster-

assignment oracle queries.

In Section 4 we show that our approach is effective for clus-

tering text data. Our algorithm is able to find clusterings that are

significantly more accurate than the ones output by alternative

semi-supervised and unsupervised approaches. We also show that

our supervised algorithm is better at optimizing our objective func-

tion when compared to a commonly-used unsupervised algorithm.

1.2 Related Work
Supervised clustering has been studied in the context of the𝑘-means

objective function. On the applied side, Basu et al. [8] and Basu

et al. [9] propose semi-supervised variants of Lloyd’s algorithm

for solving 𝑘-means. The algorithm of Basu et al. [8] incorporates

information about the cluster assignments of individual points. The

algorithm of Basu et al. [9] incorporates information about the

cluster assignments of pairs of points. They show promising exper-

imental results on the difficult Newsgroups data set. In Section 4

we test our algorithm on the same data.

On the theoretical side, Ashtiani et al. [3] present a supervised

𝑘-means algorithm that requires𝑂 (𝑘2
log 𝑘 +𝑘 log 𝑛) same-cluster

queries. They prove that if the data has a certain structure (a margin

assumption regarding the separation of clusters), their supervised

algorithm is able to solve 𝑘-means instances that are otherwise

NP-hard. In a related work, Ailon et al. [1] remove the margin

assumption and still get an approximation for the 𝑘-means problem

that is otherwise NP-hard using 𝑂 (𝑘2
log 𝑘) same-cluster queries.

Our algorithm can have better query complexity (depending on

the setting of the approximation parameters), handles noise in the

oracle responses (the algorithms of Ashtiani et al. [3] and Ailon et al.

[1] do not), and works better in practice (we compare performance

in Section 4).

Clustering with noisy queries is also considered by Mazumdar

and Saha [21]. They present algorithms that use noisy same-cluster

queries, and give an Ω(𝑛𝑘
(1−2𝛼)2

) lower bound on the number of

queries required to find the correct clustering for an oracle that is

incorrect with probability 𝛼 . User supervision is also studied in the

context of metric learning, where the goal is to adapt a metric given

pairwise constraints regarding the distances (see Bilenko et al. [10]

and Davis et al. [14]).

Our max-sum objective function is a generalization ofmodularity
[23]. Modularity is very well-studied - see, in particular, Fortunato

and Barthelemy [16], Muff et al. [22], Ziv et al. [26]. Modularity

is known to be NP-complete [11] and APX-hard [12], therefore in

practice heuristics are used to optimize it. In Section 4 we compare

performance with one such heuristic (greedy hierarchical cluster-

ing).

Our algorithm is inspired by the randomized algorithm of Gol-

dreich et al. [18] for approximating the maximum cut in a graph.

Goldreich et al. [18] observe that we can use sampling to estimate

the similarity of a point to each side of a cut. Of course we do not

know the maximum cut, therefore the algorithm of Goldreich et al.

[18] must enumerate all possible binary partitions of the sampled

points such that one of them matches the partition of the sampled

points in the optimal cut. Goldreich et al. [18] also show that this

idea may be extended to 𝑘-way cuts where now all possible 𝑘-way

partitions must be enumerated.

Giotis and Guruswami [17] show that we can approximate the

correlation clustering max agreements objective function using

effectively the same algorithm. The algorithm of Giotis and Gu-

ruswami [17] uses sampling to estimate both within-cluster simi-

larity and between-cluster dissimilarity. As before, they must enu-

merate all possible partitions of the sampled points into 𝑘 clusters.

We make the observation that for our max-sum objective func-

tion we can use sampling to estimate the similarity of a point to

each cluster with respect to both 𝑓 and 𝑔 (see Section 3). In addition,

given that the sample size is independent of the size of the data set,

we may consider our problem in a semi-supervised setting where

we simply ask for the cluster assignments of the sampled points.

Note that if the sample size is 𝑡 and we have 𝑘 clusters, the supervi-

sion removes the 𝑘𝑡 complexity of enumerating all possible cluster

assignments of the sampled points. Therefore in a semi-supervised

setting we can approximate our objective without a limitation on

the number of clusters. In contrast, an unsupervised algorithm is

only feasible when 𝑘 is a very small constant. We further observe

that our approach generalizes to the min-sum objective function,

where we can use the supervision to estimate the sum of the dis-

tances to each cluster.

2 PRELIMINARIES
Given a data set 𝑋 of size 𝑛, we use 𝑓 :

(𝑋
2

)
→ R≥0 to denote a pair-

wise similarity function for the points in 𝑋 . We use 𝑔:
(𝑋

2

)
→ R≥0

to denote a null hypothesis regarding the pairwise similarity of the

points in 𝑋 . Given a 𝑘-clustering of the points C = {𝐶1,𝐶2, . . .𝐶𝑘 },
we define its objective value Φ(C) as follows:

Φ(C) =
𝑘∑
𝑙=1

∑
(𝑥𝑖 ,𝑥 𝑗) ∈𝐶𝑙

𝑓 (𝑥𝑖 , 𝑥 𝑗) − 𝑔(𝑥𝑖 , 𝑥 𝑗).

Our max-sum optimization problem is to find a clustering that

maximizes this objective value. We assume that both 𝑓 and 𝑔 are

non-negative and are normalized to output values in [0, 1]. We

may think of the null hypothesis as some null (default) pairwise

similarity that we find to be of limited interest. As we discuss next,

the choice of the null hypothesis significantly affects the structure

of the optimal clustering.

2.1 Defining a Null Hypothesis
There are several meaningful ways to define a null hypothesis.

We may define it using the constant function 𝑔(𝑥𝑖 , 𝑥 𝑗) = 𝑠𝑎𝑣𝑒 ,

where 𝑠𝑎𝑣𝑒 is the average pairwise similarity of the points: 𝑠𝑎𝑣𝑒 =
1

𝑛2

∑
𝑥𝑖 ,𝑥 𝑗 ∈𝑋 𝑓 (𝑥𝑖 , 𝑥 𝑗).We refer to this null hypothesis as the average-

similarity null hypothesis. This definition compares the within-

cluster similarity to what we would get by chance (if we assigned

points to a cluster of this size uniformly at random).

We can also consider a null hypothesis that corresponds to the

modularity objective function. In particular, we may represent our

data set as an undirected similarity graph, where the similarities

are given by 𝑓 . We can then consider a null hypothesis 𝑔(𝑥𝑖 , 𝑥 𝑗) =
𝑑 (𝑖) · 𝑑 (𝑗)/𝑣𝑜𝑙 , where 𝑑 (𝑖) is the degree of vertex 𝑖 and 𝑣𝑜𝑙 is the
volume of the graph (the sum of the degrees of its nodes). We refer

to this null hypothesis as the degree-based null hypothesis.
Modularity is known to reward larger clusters. For a set of nodes

𝑆 , let us use 𝑣𝑜𝑙 (𝑆) to denote the sum of the degrees of its nodes.

Fortunato and Barthelemy [16] observe that if we have two sparsely

connected communities 𝑆1 and 𝑆2, merging them may still increase

modularity as long as 𝑣𝑜𝑙 (𝑆1) and 𝑣𝑜𝑙 (𝑆2) are small compared to 𝑣𝑜𝑙 .

In particular, if we have 𝑣𝑜𝑙 (𝑆1) = 𝑣𝑜𝑙 (𝑆2) = 𝑣 , we can verify that 𝑒

edges (of weight 1) between 𝑆1 and 𝑆2 are sufficient for the merge

to increase modularity as long as we have 𝑣 <
√
𝑒 · 𝑣𝑜𝑙/2. In other

words,

√
𝑒 · 𝑣𝑜𝑙/2 is the resolution limit for detecting communities

connected by 𝑒 edges.

In order to address this limitation, we may consider a null hy-

pothesis of the form 𝑔(𝑥𝑖 , 𝑥 𝑗) = 𝜂 · 𝑑 (𝑖) · 𝑑 (𝑗)/𝑣𝑜𝑙 , where 𝜂 is a

parameter that tunes the density of the clusters with respect to 𝑓 .

A larger setting of 𝜂 favors denser clusters of smaller size, while a

smaller setting of 𝜂 favors sparser clusters of larger size. Note that

if 𝜂 = 0, then the optimal solution puts all the vertices into a single

cluster. We can verify that if we use this definition with 𝜂 > 1, the

resolution limit decreases to

√
𝑒 · 𝑣𝑜𝑙/(2𝜂).

Also, observe that we may define the null hypothesis 𝑔 indepen-

dently of 𝑓 to explicitly discourage certain pairs of objects from

being assigned to the same cluster. This can be useful in applica-

tions where we have two similarity functions, and we want the

clusters to be consistent with one of them and not the other, such

as the computational biology application described in Section 1.

2.2 Notation and Definitions
We use C∗ = {𝐶∗

1
,𝐶∗

2
, . . .𝐶∗

𝑘
} to denote the clustering that optimizes

our objective function. We refer to C∗
as the optimal clustering.

We use 𝑂𝑃𝑇 = Φ(C∗) to denote its objective value and use 𝑘 to

denote the number of clusters in C∗
. We consider two clusterings

C and C′
equivalent if there is a bijection 𝜎 between the two sets

of cluster indices such that for all 𝐶𝑖 ∈ C we have 𝐶𝑖 = 𝐶
′
𝜎 (𝑖) .

Wemodel the supervision in the form of oracle queries that reveal

information about the optimal clustering C∗
. More precisely, we

assume that we have access to a cluster assignment oracle that given
a point reveals its cluster assignment in C∗

(see Definition 2.1).

Definition 2.1 (Cluster Assignment Oracle). Given a point
𝑥 ∈ 𝑋 , the oracle returns the index 𝑖 such that 𝑥 ∈ 𝐶∗

𝑖
.

We also consider a same-cluster oracle that given two points

reveals whether or not they belong to the same cluster in C∗
(see

Definition 2.2).

Definition 2.2 (Same-Cluster Oracle). Given points 𝑥,𝑦 ∈ 𝑋 ,
the oracle returns true if there is a cluster 𝐶∗

𝑖
such that 𝑥 ∈ 𝐶∗

𝑖
and

𝑦 ∈ 𝐶∗
𝑖
, and returns false otherwise.

We observe that cluster-assignment queries may be reduced to

same-cluster queries (see Proposition 2.3). This relationship was

also observed in Ashtiani et al. [3].

Proposition 2.3 (Relationship Between Oracle Models).

Any 𝑡 cluster-assignment queries may be reduced to at most 𝑘𝑡 same-
cluster queries.

Proof. Given 𝑡 points 𝑥1, 𝑥2, . . . 𝑥𝑡 , we show how to assign clus-

ter indices to them using only same-cluster queries. Assign 𝑥1 a

new cluster index. Then for 𝑗 = 2, ..., 𝑡 , query 𝑥 𝑗 w.r.t. all 𝑥𝑖 for 𝑖 < 𝑗 ,

skipping any 𝑥𝑖 with redundant cluster indices. If the same-cluster

oracle returns true for any 𝑥𝑖 , assign 𝑥 𝑗 the same cluster index as

𝑥𝑖 . Otherwise assign 𝑥 𝑗 a new cluster index. □

In order to more realistically model the supervision we consider

a noisy cluster assignment oracle. Given a noise parameter 𝛼 , the

oracle reveals the correct cluster assignment in C∗
with probability

1 − 𝛼 (see Definition 2.4).

Definition 2.4 (𝛼-Noisy Cluster Assignment Oracle). Given
a point 𝑥 ∈ 𝑋 , with probability 1 − 𝛼 , the oracle returns the index 𝑖
such that 𝑥 ∈ 𝐶∗

𝑖
. Otherwise the oracle returns some index 𝑗 ≠ 𝑖 .

Wealso consider the settingwhere the supervision simply reveals

some fixed user clustering C𝑢
(see Definition 2.5).

Definition 2.5 (Cluster Assignment UserQuery). Given a
point 𝑥 ∈ 𝑋 , the query returns the index 𝑖 such that 𝑥 ∈ C𝑢

𝑖
, where

C𝑢 is some fixed user clustering.

For a subset of points 𝑆 ⊆ 𝑋 , we define 𝑓 (𝑥, 𝑆) = ∑
𝑦∈𝑆 𝑓 (𝑥,𝑦),

and define 𝑔(𝑥, 𝑆) similarly. When 𝑆 = ∅, we define 𝑓 (𝑥, 𝑆) =

𝑔(𝑥, 𝑆) = 0.

We use E[𝑋] to denote the expected value of random variable 𝑋 .

Proposition 2.6 restates a bound regarding sums of random variables

(due to Hoeffding [20]). We use it to estimate 𝑓 (𝑥, 𝑆) and 𝑔(𝑥, 𝑆) for
subsets of points 𝑆 ⊆ 𝑋 .

Proposition 2.6. Let 𝑋1, 𝑋2, ..., 𝑋𝑡 be 𝑡 independent random vari-
ables with𝑋𝑖 ∈ [0, 1]. Let 𝜇 = (1/𝑡) ·∑𝑖 E[𝑋𝑖], and𝑋 = (1/𝑡) ·∑𝑖 𝑋𝑖 .
Then for any 𝛾 ∈ [0, 1], we have 𝑃𝑟 [𝑋 > 𝜇 + 𝛾] ≤ 𝑒𝑥𝑝 (−2𝑡𝛾2), and
𝑃𝑟 [𝑋 < 𝜇 − 𝛾] ≤ 𝑒𝑥𝑝 (−2𝑡𝛾2).

3 ALGORITHM
We first give the general idea behind our algorithm, and then follow

with its description and performance analysis.

3.1 General Idea
Suppose we sample a sufficiently large set of points 𝑆 ⊂ 𝑋 uni-

formly at random, and then generate a clustering D of the points

in 𝑆 by using cluster-assignment queries. For each point 𝑥 ∈ 𝑋

we may then assign it to cluster 𝑙 = argmax𝑗 𝑓 (𝑥, 𝐷 𝑗) − 𝑔(𝑥, 𝐷 𝑗).
Here 𝑓 (𝑥, 𝐷 𝑗) =

∑
𝑦∈𝐷 𝑗

𝑓 (𝑥,𝑦) and 𝑔(𝑥, 𝐷 𝑗) =
∑

𝑦∈𝐷 𝑗
𝑔(𝑥,𝑦).

Our sample size enables us to bound |𝑓 (𝑥, 𝐷 𝑗) − 𝑓 (𝑥,𝐶∗
𝑗
) | and

|𝑔(𝑥, 𝐷 𝑗) −𝑔(𝑥,𝐶∗
𝑗
) |. We will then either put 𝑥 into the correct clus-

ter in C∗
or put it in a different cluster where its contribution to the

objective value does not change much. Therefore when we assign

𝑥 in this manner the objective value cannot get much worse. How-

ever, this argument only holds if all other points are still assigned

as in C∗
. If a lot of the other points change clusters we cannot get

a bound on the objective value of the output clustering.

Instead we will partition our data set into 𝑚 equal sized sets

𝑋1, ..., 𝑋𝑚 , and for 𝑖 = 1, 2, . . .𝑚, assign the points in𝑋𝑖 by sampling

points in 𝑋 \𝑋𝑖 . Then regardless of how many points in 𝑋𝑖 change

clusters, we can still bound the change in the objective value w.r.t.

all pairs of points (𝑥,𝑦) such that 𝑥 ∈ 𝑋𝑖 and 𝑦 ∈ 𝑋 \𝑋𝑖 . We follow

with the exact description of the algorithm and its performance

analysis.

3.2 Description and Performance Analysis
Our algorithm first partitions the point set 𝑋 into𝑚 equal-sized

sets. The partition may be done in any manner. We use 𝑋1, ..., 𝑋𝑚
to refer to these sets. In iteration 𝑖 = 1, . . .𝑚, the algorithm assigns

points in 𝑋𝑖 using a small sample of points from 𝑋 \𝑋𝑖 . In our semi-

supervised framework, the information that we use from the sample

of points in 𝑋 \ 𝑋𝑖 is a combination of the cluster assignments we

have made so far (if any), and queries for the cluster assignments.

Algorithm 1 Supervised-Max-Sum(𝑋, 𝑘, 𝑓 , 𝑔, 𝜖, 𝛿)

Initialize𝑚 = 2/𝜖 , 𝑡 = 32
2

2𝜖2
log

64𝑚𝑘
𝜖𝛿

Partition 𝑋 into𝑚 sets 𝑋1, 𝑋2, ..., 𝑋𝑚 of equal size

Initialize C = 𝐶1,𝐶2, . . .𝐶𝑘 to 𝑘 empty clusters

for 𝑖 = 1 to𝑚 do
D = Assign-Clusters(𝑋 \ 𝑋𝑖 , 𝑘,𝐶, 𝑡)
for 𝑥 ∈ 𝑋𝑖 do
Let 𝑙 = argmax𝑗 𝑓 (𝑥, 𝐷 𝑗) − 𝑔(𝑥, 𝐷 𝑗)
Assign 𝑥 to 𝐶𝑙

end for
end for
Output C

We use D to refer to the corresponding clustering of the sampled

points. We then assign each point in 𝑋𝑖 based on its similarity to

the clusters in D. The entire algorithm is described in Algorithm 1.

In our description we use Cluster-Assignment-Query(𝑥) to denote

the query for the cluster assignment of 𝑥 .

We next state the theorem regarding the algorithm performance.

Theorem 3.1 is most relevant when 𝑂𝑃𝑇 is large. In such cases we

output a constant-factor approximation of the optimal solution us-

ing a very limited number of oracle queries. Corollary 3.2 formalizes

this observation.

Theorem 3.1. Given a data set 𝑋 of size 𝑛, a cluster assignment
oracle, and approximation parameters 𝛿, 𝜖 , with probability at least
1 − 𝛿 , Algorithm 1 outputs a clustering with objective value at least
𝑂𝑃𝑇 − 3/4 · 𝜖𝑛2 using 𝑂 (𝜖−3log 𝑘

𝜖𝛿
) oracle queries and runs in time

𝑂 (𝑛𝜖−2log 𝑘
𝜖𝛿

).

Corollary 3.2. Suppose 𝑂𝑃𝑇 = Ω(𝑛2). Given a data set 𝑋 of
size 𝑛, a cluster assignment oracle, and approximation parameter 𝛿 ,
with probability at least 1 − 𝛿 , Algorithm 1 outputs a constant-factor
approximation of the optimal solution using 𝑂 (log𝑘

𝛿
) oracle queries

and runs in time 𝑂 (𝑛log𝑘
𝛿
).

Proof. Suppose 𝑂𝑃𝑇 = Ω(𝑛2). It follows that there exists a

constant 𝑐 such that𝑂𝑃𝑇 ≥ 𝑐𝑛2
. We can then set 𝜖 = 2𝑐/3 to obtain

a solution with objective value at least 𝑂𝑃𝑇 − (3/4) (2𝑐/3) (𝑛2) =
𝑂𝑃𝑇 − (𝑐/2) (𝑛2) ≥ 𝑐𝑛2 − (𝑐/2) (𝑛2) = (𝑐/2) (𝑛2). Given that 𝑂𝑃𝑇

may be at most 𝑛2
, this objective value is a (2/𝑐)-approximation

of the optimal solution. For this setting of 𝜖 , Algorithm 1 requires

𝑂 (log𝑘
𝛿
) oracle queries and runs in time 𝑂 (𝑛log𝑘

𝛿
). □

We now follow with a detailed analysis of the algorithm that

enables us to prove Theorem 3.1. In order to proceed with our

analysis, we define the following sequence of intermediate cluster-
ings 𝐻1, 𝐻2, . . . 𝐻𝑚+1

. These intermediate clusterings correspond
to the execution of the outer-most for-loop in Algorithm 1. The

clustering 𝐻 𝑖
assigns the points in 𝑋1, . . . 𝑋𝑖−1 as clustered by the

algorithm so far, and assigns the rest of the points as clustered in

C∗
. In particular, we have 𝐻1 = C∗

, and 𝐻𝑚+1
is equivalent to the

clustering output by Algorithm 1. We will use subscripts to refer to

the clusters of 𝐻 𝑖
. For example, 𝐻 𝑖

𝑗
refers to cluster 𝑗 of 𝐻 𝑖

. Given

that in iteration 𝑖 we sample from vertices in 𝑋 \𝑋𝑖 , we will use �̂� 𝑖

Algorithm 2 Assign-Clusters(𝑋, 𝑘,𝐶, 𝑡)

Let 𝑆 = 𝑈 𝑡 (𝑋) // Sample 𝑡 points from 𝑋 u.a.r.

Initialize D = 𝐷1, 𝐷2, . . . 𝐷𝑘 to 𝑘 empty clusters

for 𝑥 ∈ 𝑆 do
if 𝑥 is assigned to some 𝐶 𝑗 ∈ 𝐶 then

Assign 𝑥 to 𝐷 𝑗

else
Let 𝑗 = Cluster-Assignment-Query(𝑥)
Assign 𝑥 to 𝐷 𝑗

end if
end for
Output D

to refer to 𝐻 𝑖
with vertices from 𝑋𝑖 removed. In other words, we

have �̂� 𝑖
𝑗
= 𝐻 𝑖

𝑗
\ 𝑋𝑖 for 𝑗 = 1, . . . 𝑘 .

We next observe that sampling enables us to accurately estimate

similarity to the clusters in �̂� 𝑖
. This enables us to bound the de-

crease in the objective function in each iteration of the algorithm.

Definition 3.3 formalizes what we mean by accurately.

Definition 3.3. Consider iteration 𝑖 of Algorithm 1. We say that
a point 𝑥 ∈ 𝑋𝑖 is good with respect to 𝑓 if the following holds for each
𝑗 ∈ 1, . . . 𝑘 : ����� 𝑓 (𝑥, 𝐷 𝑗)

𝑡
−
𝑓 (𝑥, �̂� 𝑖

𝑗
)

|𝑋 \ 𝑋𝑖 |

����� ≤ 𝜖/32. (1)

Otherwise we say that 𝑥 is bad with respect to 𝑓 . Similarly, we say
that a point 𝑥 ∈ 𝑋𝑖 is good with respect to 𝑔 if the following holds for
each 𝑗 ∈ 1, . . . 𝑘 : �����𝑔(𝑥, 𝐷 𝑗)

𝑡
−
𝑔(𝑥, �̂� 𝑖

𝑗
)

|𝑋 \ 𝑋𝑖 |

����� ≤ 𝜖/32. (2)

Otherwise we say that 𝑥 is bad with respect to 𝑔.

Lemma 3.4 shows that for each 𝑋𝑖 most points are good with

respect to 𝑓 . Clearly, the same statement also holds with respect to

𝑔.

Lemma 3.4. With probability at least 1− 𝛿/2, for each 𝑖 = 1, . . .𝑚,
at most an 𝜖/16 fraction of the points 𝑥 ∈ 𝑋𝑖 are bad with respect to
𝑓 .

Proof. Let us fix some 𝑋𝑖 and some point 𝑥 ∈ 𝑋𝑖 . Consider the
sequence of points 𝑠1, . . . 𝑠𝑡 sampled by Algorithm 2 from 𝑋 \ 𝑋𝑖 .
For each cluster 𝑗 ∈ 1, . . . 𝑘 in �̂� 𝑖

, we define 𝑡 random variables

Ψ
𝑗

1
, . . .Ψ

𝑗
𝑡 (corresponding to the sampled points) in the following

manner: Ψ
𝑗

𝑙
= 𝑓 (𝑥, 𝑠𝑙) if 𝑠𝑙 ∈ �̂� 𝑖

𝑗
and Ψ

𝑗

𝑙
= 0 otherwise.

Observe that by definition,

∑𝑡
𝑙=1

Ψ
𝑗

𝑙
= 𝑓 (𝑥, 𝐷 𝑗). In addition, for

each 𝑙 ∈ 1, . . . 𝑡 , we have E(Ψ 𝑗

𝑙
) = 𝑓 (𝑥, �̂� 𝑖

𝑗
)/|𝑋 \ 𝑋𝑖 |. Then by

Proposition 2.6 we have:

𝑃𝑟

[����� 𝑓 (𝑥, 𝐷 𝑗)
𝑡

−
𝑓 (𝑥, �̂� 𝑖

𝑗
)

|𝑋 \ 𝑋𝑖 |

����� > 𝜖/32

]
< 2𝑒−2𝑡 (𝜖/32)2

.

For our choice of 𝑡 , we have 2𝑒−2𝑡 (𝜖/32)2

= 𝜖𝛿/(32𝑚𝑘). Therefore
for any fixed point 𝑥 and cluster 𝑗 , the probability that Equation 1

is not satisfied is less than 𝜖𝛿/(32𝑚𝑘). Taking the union bound, the

probability that 𝑥 is bad (Equation 1 is not satisfied for some cluster

𝑗) is less than 𝜖𝛿/(32𝑚). Using Markov’s inequality, the probability

that more than an 𝜖/16 fraction of the points are bad is less than

or equal to (𝜖𝛿/(32𝑚))/(𝜖/16) = 𝛿/(2𝑚). The lemma follows by

taking the union bound over all𝑚 sets 𝑋𝑖 . □

Using Lemma 3.4 we can bound the loss in the objective function

in each iteration of the algorithm and prove Theorem 3.1.

Proof of Theorem 3.1. We show that Φ(𝐻 𝑖+1) is at most 6/16 ·
𝜖2𝑛2

smaller than Φ(𝐻 𝑖) . Given that we start with 𝐻1 = C∗
, and

𝐻𝑚+1
is the clustering output by the algorithm, it follows that

the output clustering must have objective value within𝑚 · 6/16 ·
𝜖2𝑛2 = (2/𝜖) · 6/16 · 𝜖2𝑛2 = 3/4 · 𝜖𝑛2

of 𝑂𝑃𝑇 . By construction, our

algorithm requires at most𝑚𝑡 = 𝑂 (𝜖−3
log

𝑘
𝜖𝛿

) queries, and runs in

time 𝑛𝑡 = 𝑂 (𝑛𝜖−2
log

𝑘
𝜖𝛿

).
We now give the argument for Φ(𝐻 𝑖+1) in relation to Φ(𝐻 𝑖). By

definition, the difference between𝐻 𝑖+1
and𝐻 𝑖

is only in the cluster

assignments of the points in 𝑋𝑖 . We first consider the placement of

the points in 𝑋𝑖 with respect to each other. We assume that we take

the largest possible loss for each such pair. Given that both 𝑓 and 𝑔

are normalized to output values in [0, 1], the largest possible loss
for each such pair is 1, and we may lose up to |𝑋𝑖 |2 in the objective

value in total.

Then it suffices to focus on the placement of the points in𝑋𝑖 with

respect to the points in 𝑋 \ 𝑋𝑖 . We can verify that when we assign

points that are good with respect to both 𝑓 and 𝑔 (see Definition

3.3), we can lose at most 4 · 𝜖𝑛/32 = 𝜖𝑛/8 in the objective value.

Finally, for points that are bad with respect to 𝑓 or 𝑔, we again

assume that we take the largest possible loss, which is at most

1 · |𝑋 \𝑋𝑖 | < 𝑛. Using Lemma 3.4 with respect to 𝑓 and 𝑔, and then

taking the union bound, we can see that with probability at least

1 − 𝛿 the fraction of such points is at most 𝜖/16 + 𝜖/16 = 𝜖/8.

Recalling that |𝑋𝑖 | = 𝜖𝑛/2, the total loss in the objective value for

𝐻 𝑖+1
with respect to 𝐻 𝑖

may be at most (𝜖𝑛/2)2 + (𝜖𝑛/2) (𝜖𝑛/8) +
(𝜖/8) (𝜖𝑛/2) (𝑛) = 6/16 · 𝜖2𝑛2

. □

In Section 2 we observe that cluster-assignment oracle queries
may be reduced to same-cluster oracle queries. It follows that we
can then modify Algorithm 1 to use same-cluster queries.

Corollary 3.5. Algorithm 1 can bemodified to use𝑂 (𝑘𝜖−3log 𝑘
𝜖𝛿

)
same-cluster oracle queries while achieving the same performance
guarantee.

Proof. The corollary follows immediately from Theorem 3.1

and Proposition 2.3. The cluster-assignment queries required by

Algorithm 2 may be reduced to same-cluster queries using the

procedure in the proof of Proposition 2.3. Note that we must run

the procedure exactly once (after collecting the cluster-assignment

queries required by all iterations of Algorithm 2) such that the

assigned cluster indices are consistent across all iterations. □

We also observe that if the clusters in the optimal clustering C∗

are large, then Algorithm 1 may be modified to not take the number

of clusters as input.

Theorem 3.6. If each cluster in C∗ has size Ω(𝑛/𝑘), then Algo-
rithm 1 can be modified to not take 𝑘 as input. Given a data set 𝑋

of size 𝑛, a cluster assignment oracle, and approximation parameters
𝛿, 𝜖 , with probability at least 1 − 2𝛿 , the modified algorithm out-
puts a clustering with objective value at least 𝑂𝑃𝑇 − 3/4 · 𝜖𝑛2 using
𝑂 (𝑘 log𝑘

𝛿
+𝜖−3log 𝑘

𝜖𝛿
) oracle queries and runs in time𝑂 (𝑛𝜖−2log 𝑘

𝜖𝛿
).

Proof. The algorithm may be modified as follows. We first sam-

ple a set of points 𝑄 ⊂ 𝑋 uniformly at random, and query their

cluster assignments. Let 𝐼 be the set of unique cluster indices re-

turned by the queries. We then run Algorithm 1 only considering

clusters 𝐶𝑖 and 𝐷𝑖 for 𝑖 ∈ 𝐼 . In particular, any points belonging to

other clusters may be ignored in Algorithm 2 when constructing

D. We can verify that if |𝑄 | = 𝑂 (𝑘 log
𝑘
𝛿
), with probability at least

1 − 𝛿 , we will sample a point from each cluster in C∗
. When this

is the case, the analysis of the algorithm remains unchanged, and

with probability at least 1 − 𝛿 we output a clustering with objective

value at least 𝑂𝑃𝑇 − 3/4 · 𝜖𝑛2
. Taking the union bound over the

two events, we achieve the performance guarantee with probability

at least 1 − 2𝛿 . The asymptotic run time of the algorithm remains

unchanged. □

3.3 Noisy Cluster Assignment Oracle
In practice it’s hard to expect the supervision to be completely

correct. Instead, the query responsesmay only be correct on average.

We model this scenario using noisy cluster assignment queries (see

Definition 2.4). Theorem 3.7 gives a bound on the expected objective

value of the clustering output by the algorithm in this setting.

Theorem 3.7. Given a data set 𝑋 of size 𝑛, an 𝛼-noisy cluster
assignment oracle, and approximation parameters 𝛿, 𝜖 , with proba-
bility at least 1 − 𝛿 , Algorithm 1 outputs a clustering with expected
objective value at least 𝑂𝑃𝑇 − 3/4 · 𝜖𝑛2 − 4𝛼𝑛2 using 𝑂 (𝜖−3log 𝑘

𝜖𝛿
)

oracle queries and runs in time 𝑂 (𝑛𝜖−2log 𝑘
𝜖𝛿

).

Proof. The proof is similar to the proof of Theorem 3.1 with

the following modification. We need to reconsider the analysis

regarding the placement of the points in 𝑋𝑖 with respect to the

points in 𝑋 \𝑋𝑖 . In particular, we reconsider the analysis regarding

the placement of the points that are good with respect to both 𝑓

and 𝑔.

To represent the oracle noise, consider the random variables

Ω1, . . . Ω𝑡 corresponding to the sampled points 𝑠1, . . . 𝑠𝑡 , which are

defined in the following manner: Ω𝑙 = 1 if the oracle assigns 𝑠𝑙
incorrectly, and Ω𝑙 = 0 if the oracle assigns 𝑠𝑙 correctly or the

oracle is not asked to assign 𝑠𝑙 . We will use 𝐷1, . . . 𝐷𝑘 to refer to

the execution of the algorithm without any oracle noise, and use

�̃�1, . . . �̃�𝑘 to refer to the execution with the 𝛼-noisy oracle.

Consider some point 𝑥 ∈ 𝑋𝑖 and some cluster 𝑗 . We observe

that |𝑓 (𝑥, 𝐷 𝑗) − 𝑓 (𝑥, �̃� 𝑗) | ≤ ∑𝑡
𝑙=1

Ω𝑡 , and similarly |𝑔(𝑥, 𝐷 𝑗) −
𝑔(𝑥, �̃� 𝑗) | ≤

∑𝑡
𝑙=1

Ω𝑡 . To verify this, consider that each point in-

correctly assigned by the oracle may incorrectly assign a point

in 𝐷𝑙≠𝑗 to 𝐷 𝑗 , or may incorrectly assign a point in 𝐷 𝑗 to some

𝐷𝑙≠𝑗 . Given that both 𝑓 and 𝑔 are normalized to output values in

[0, 1], each incorrectly assigned point may then add or remove

at most 1 from 𝑓 (𝑥, 𝐷 𝑗) and 𝑔(𝑥, 𝐷 𝑗). Also, by definition, we have

E[∑𝑡
𝑙=1

Ω𝑡] ≤ 𝛼𝑡 . Then it follows that E[|𝑓 (𝑥, 𝐷 𝑗)−𝑓 (𝑥, �̃� 𝑗) |] ≤ 𝛼𝑡
and E[|𝑔(𝑥, 𝐷 𝑗) − 𝑔(𝑥, �̃� 𝑗) |] ≤ 𝛼𝑡 .

Again, let us consider some point 𝑥 ∈ 𝑋𝑖 that is good with respect
to both 𝑓 and 𝑔. We can verify that in expectation we lose at most

4 · 𝜖𝑛/32 + 4 · 𝛼𝑛 in the objective value when we assign such point.

This gives an additional expected loss of 4𝛼𝑛 for any point in𝑋𝑖 that

is good with respect to both 𝑓 and𝑔. The analysis for all other points
remains unchanged. In each iteration, we then in expectation lose

at most an additional |𝑋𝑖 | · 4𝛼𝑛 = (𝑛/𝑚) · 4𝛼𝑛 in the objective value.

Given that we have a total of𝑚 iterations, overall in expectation

we lose at most an additional 4𝛼𝑛2
in the objective value. □

3.4 Oracle Queries Versus User Queries
Assuming that we have access to an oracle that reveals the optimal

clustering may be unrealistic even in a noisy setting. Here we

consider a weaker assumption that our queries simply reveal some

fixed user clustering C𝑢
(see Definition 2.5). We can still expect

C𝑢
to have a good objective value, and we can use the queries

to compute a clustering where the objective is not much worse.

Theorem 3.8 states the performance of our algorithm in this setting.

Theorem 3.8. Given a data set𝑋 of size 𝑛, access to cluster assign-
ment user queries, and approximation parameters 𝛿, 𝜖 , with probabil-
ity at least 1−𝛿 , Algorithm 1 outputs a clustering with objective value
at least 𝜙 − 3/4 · 𝜖𝑛2 using 𝑂 (𝜖−3log 𝑘′

𝜖𝛿
) queries and runs in time

𝑂 (𝑛𝜖−2log 𝑘′

𝜖𝛿
), where 𝜙 is the objective value of the user clustering

C𝑢 , and 𝑘 ′ is the number of clusters in C𝑢 .

Proof. The proof follows immediately from the analysis in Sec-

tion 3.2, where it suffices to replace C∗
with C𝑢

. We can still de-

fine a sequence of intermediate clusterings 𝐻1, 𝐻2, . . . 𝐻𝑚+1
, where

𝐻1 = C𝑢
, and 𝐻𝑚+1

is the output clustering. The argument in

Theorem 3.1 regarding the difference between Φ(𝐻 𝑖+1) and Φ(𝐻 𝑖)
remains unchanged. Given that we start with Φ(𝐻1) = 𝜙 , the ob-
jective value of the output clustering must be within 3/4 · 𝜖𝑛2

of

𝜙 . The arguments regarding the number of queries required by the

algorithm and the run time remain unchanged. □

3.5 Min-Sum Objective Function
Our algorithm may be modified to optimize the min-sum objective

function. Given a 𝑘-clustering of the points C = {𝐶1,𝐶2, . . .𝐶𝑘 },
here we use Φ(C) to denote its min-sum objective value, which is

defined as follows:

Φ(C) =
𝑘∑
𝑙=1

∑
(𝑥𝑖 ,𝑥 𝑗) ∈𝐶𝑙

𝑑 (𝑥𝑖 , 𝑥 𝑗).

Here 𝑑 :
(𝑋

2

)
→ R≥0 is a distance function for the points in 𝑋 .

As before, we assume that 𝑑 is non-negative and is normalized to

output values in [0, 1]. Note that our algorithm does not require 𝑑

to be a metric. Clearly, for the min-sum objective we would like to

minimize Φ(C), given that we want a clustering where points in

the same cluster have small pairwise distances. Also, note that the

min-sum objective requires a predetermined number of clusters - if

we are allowed to use any setting of 𝑘 then there is a trivial optimal

solution that puts each point in its own cluster.

The algorithm for the min-sum objective is described in Al-

gorithm 3. As before, for a subset of points 𝑆 ⊆ 𝑋 , we define

Algorithm 3 Supervised-Min-Sum(𝑋, 𝑘, 𝑑, 𝜖, 𝛿)

Initialize𝑚 = 2/𝜖 , 𝑡 = 32
2

2𝜖2
log

64𝑚𝑘
𝜖𝛿

Partition 𝑋 into𝑚 sets 𝑋1, 𝑋2, ..., 𝑋𝑚 of equal size

Initialize C = 𝐶1,𝐶2, . . .𝐶𝑘 to 𝑘 empty clusters

for 𝑖 = 1 to𝑚 do
D = Assign-Clusters(𝑋 \ 𝑋𝑖 , 𝑘,𝐶, 𝑡)
for 𝑥 ∈ 𝑋𝑖 do
Let 𝑙 = argmin𝑗𝑑 (𝑥, 𝐷 𝑗)
Assign 𝑥 to 𝐶𝑙

end for
end for
Output C

𝑑 (𝑥, 𝑆) =
∑

𝑦∈𝑆 𝑑 (𝑥,𝑦) if 𝑆 is non-empty, and 𝑑 (𝑥, 𝑆) = 0 other-

wise.

Theorem 3.9 states the performance of Algorithm 3. Note that

in this setting𝑂𝑃𝑇 refers to the objective value of the optimal min-

sum clustering, and the oracle queries are also with respect to the

optimal min-sum clustering.

Theorem 3.9. Given a data set 𝑋 of size 𝑛, a cluster assignment
oracle, and approximation parameters 𝛿, 𝜖 , with probability at least
1− 𝛿/2, Algorithm 3 outputs a clustering with objective value at most
𝑂𝑃𝑇 + 5/8 · 𝜖𝑛2 using 𝑂 (𝜖−3log 𝑘

𝜖𝛿
) oracle queries and runs in time

𝑂 (𝑛𝜖−2log 𝑘
𝜖𝛿

).

Proof. Similar to the analysis in the previous sections, we can

define a sequence of intermediate clusterings 𝐻1, 𝐻2, . . . 𝐻𝑚+1
and

�̂�1, �̂�2, . . . �̂�𝑚+1
that correspond to the execution of Algorithm 3.

For iteration 𝑖 of Algorithm 3, we say that a point 𝑥 ∈ 𝑋𝑖 is good if

we have

����𝑑 (𝑥,𝐷 𝑗)
𝑡 −

𝑑 (𝑥,�̂� 𝑖
𝑗
)

|𝑋\𝑋𝑖 |

���� ≤ 𝜖/32 for each 𝑗 ∈ 1, . . . 𝑘 . Otherwise

we say that 𝑥 is bad.
We can show that Φ(𝐻 𝑖+1) is at most 5/16 · 𝜖2𝑛2

larger than

Φ(𝐻 𝑖), where Φ now refers to the min-sum objective function.

Given that we start with 𝐻1
equivalent to the optimal min-sum

clustering, and 𝐻𝑚+1
is the clustering output by the algorithm, it

follows that the output clustering must have objective value within

𝑚 · 5/16 · 𝜖2𝑛2 = (2/𝜖) · 5/16 · 𝜖2𝑛2 = 5/8 · 𝜖𝑛2
of 𝑂𝑃𝑇 . The query

complexity and run-time of the algorithm remain unchanged.

We now give the argument for Φ(𝐻 𝑖+1) in relation to Φ(𝐻 𝑖). As
before, the difference between 𝐻 𝑖+1

and 𝐻 𝑖
is only in the cluster

assignments of the points in 𝑋𝑖 . We first consider the placement of

the points in 𝑋𝑖 with respect to each other. As before, we can see

that when we assign these points, the largest possible loss for each

such pair is 1, and we may lose up to |𝑋𝑖 |2 in the objective value in

total.

We now consider the placement of the points in 𝑋𝑖 with respect

to the points in 𝑋 \ 𝑋𝑖 . We can verify that when we assign good
points, we can lose at most 2 · 𝜖𝑛/32 = 𝜖𝑛/16 in the objective value.

For bad points we again assume that we take the largest possible

loss, which is at most 1 · |𝑋 \𝑋𝑖 | < 𝑛. Per the argument in Lemma 3.4,

with probability at least 1 − 𝛿/2, the fraction of bad points is at

most 𝜖/16.

Recalling that |𝑋𝑖 | = 𝜖𝑛/2, the total loss in the objective value for

𝐻 𝑖+1
with respect to 𝐻 𝑖

may be at most (𝜖𝑛/2)2 + (𝜖𝑛/2) (𝜖𝑛/16) +
(𝜖/16) (𝜖𝑛/2) (𝑛) = 5/16 · 𝜖2𝑛2

. □

We can also consider a noisy cluster-assignment oracle when

optimizing the min-sum objective (see Definition 2.4). Theorem 3.10

states the performance of the algorithm in this setting.

Theorem 3.10. Given a data set 𝑋 of size 𝑛, an 𝛼-noisy cluster
assignment oracle, and approximation parameters 𝛿, 𝜖 , with probabil-
ity at least 1 − 𝛿/2, Algorithm 3 outputs a clustering with expected
objective value at most 𝑂𝑃𝑇 + 5/8 · 𝜖𝑛2 + 2𝛼𝑛2 using 𝑂 (𝜖−3log 𝑘

𝜖𝛿
)

oracle queries and runs in time 𝑂 (𝑛𝜖−2log 𝑘
𝜖𝛿

).

Proof. The proof is similar to the proof of Theorem 3.9 with

the following modification. We need to reconsider the analysis

regarding the placement of the points in 𝑋𝑖 with respect to the

points in 𝑋 \𝑋𝑖 . In particular, we reconsider the analysis regarding

the placement of the good points.

As before, to represent the oracle noise, consider the random

variables Ω1, . . . Ω𝑡 corresponding to the sampled points 𝑠1, . . . 𝑠𝑡 ,

which are defined in the following manner: Ω𝑙 = 1 if the oracle

assigns 𝑠𝑙 incorrectly, and Ω𝑙 = 0 if the oracle assigns 𝑠𝑙 correctly

or the oracle is not asked to assign 𝑠𝑙 . We will use 𝐷1, . . . 𝐷𝑘 to refer

to the execution of the algorithm without any oracle noise, and use

�̃�1, . . . �̃�𝑘 to refer to the execution with the 𝛼-noisy oracle.

Consider some point 𝑥 ∈ 𝑋𝑖 and some cluster 𝑗 . As before, we

can verify that |𝑑 (𝑥, 𝐷 𝑗) − 𝑑 (𝑥, �̃� 𝑗) | ≤
∑𝑡
𝑙=1

Ω𝑡 . Also, by defini-

tion, we have E[∑𝑡
𝑙=1

Ω𝑡] ≤ 𝛼𝑡 . Then it follows that E[|𝑑 (𝑥, 𝐷 𝑗) −
𝑑 (𝑥, �̃� 𝑗) |] ≤ 𝛼𝑡 .

Again, let us consider some good point 𝑥 ∈ 𝑋𝑖 . We can verify

that in expectation we lose at most 2 · 𝜖𝑛/32+ 2 ·𝛼𝑛 in the objective

value when we assign such point. This gives an additional expected

loss of 2𝛼𝑛 for any such point. The analysis for all other points

remains unchanged. In each iteration, we then in expectation lose

at most an additional |𝑋𝑖 | · 2𝛼𝑛 = (𝑛/𝑚) · 2𝛼𝑛 in the objective value.

Given a total of𝑚 iterations, overall in expectation we lose at most

an additional 2𝛼𝑛2
in the objective value. □

As in the previous sections, we can modify Algorithm 3 to

use same-cluster queries, and also consider the setting where the

queries reveal some fixed user clustering rather than the optimal

clustering. We can then prove the equivalent of Corollary 3.5 and

Theorem 3.8 for Algorithm 3 regarding its performance in these

settings.

4 EXPERIMENTAL RESULTS
We perform computational experiments on the Newsgroups data

set available from the UCI Machine Learning Repository [15]. The

points in the data set are text documents. Each text document is a

post to one of 20 different online forums (called newsgroups). We

use a pre-processed version of the data set.
1
In this data set duplicate

posts are removed, and headers that may identify a newsgroup are

removed from each post. The data set contains 18,828 points.

Each document is represented by a term frequency - inverse

document frequency (tf-idf) vector encoding the uni-grams in the

1
The data set is available at http://qwone.com/~jason/20Newsgroups.

http://qwone.com/~jason/20Newsgroups

document. We keep all standard ASCII characters in each document

and do not remove any stop words. The tf-idf vectors are compared

using cosine similarity. Given that all the feature vectors are non-

negative, this gives a similarity function in [0, 1] for all pairs of
points.

We term our Algorithm 1 Supervised Max-Sum. In order to define

our max-sum objective we need to specify a null hypothesis. In

our experiments we use the degree-based null hypothesis (see Sec-

tion 2.1). In Section 4.3 we also consider scaling the degree-based

null hypothesis to reward less dense versus more dense clusters,

and using the average-similarity null hypothesis (see Section 2.1).

4.1 Hyper-Parameter Settings
We need to set the parameters of Algorithm 1 to use a certain

number of oracle queries. Observe that by construction, Algorithm 1

requires at most𝑚𝑡 queries, where𝑚 is the number of partitions

and 𝑡 is the maximum number of queries per partition. We set

𝑚 consistent with our theoretic analysis. Given that we require

𝑂 (𝜖−3𝑙𝑜𝑔 𝑘
𝜖𝛿

) queries, we choose a larger setting of 𝜖 to limit the

number of queries, setting 𝜖 = 2/3, and therefore set𝑚 = 2/𝜖 = 3.

We then vary 𝑡 heuristically to use more versus less queries.

4.2 Comparison with Semi-Supervised
Methods

We compare our algorithm with three other semi-supervised ap-

proaches in terms of the ability to recover the given clustering. We

compare performance with Algorithm 1 from Ashtiani et al. [3],

which we term Supervised K-Means. Supervised K-Means uses both
cluster-assignment queries and same-cluster queries, we only count

the number of cluster-assignment queries. We also compare with

the algorithm of Ailon et al. [1], which they term Query-K-Means++.
This algorithm may use either cluster-assignment or same-cluster

queries; we implement it using cluster-assignment queries. For the

supervised 𝑘-means algorithms we convert cosine similarity to a

distance by subtracting from 1.0.

Supervised K-Means iteratively constructs 𝑘 clusters, but does not
specify what happens to any unclustered points at the end of the last

iteration. In our implementation we assign each such point to the

closest of the 𝑘 clusters using average distance. Query-K-Means++
does not support using more than a limited number of queries - it

takes the number of clusters as input and only queries points to

find new clusters. Therefore its performance remains unchanged

as we allow for using more queries.

We also compare with Supervised K-Nearest Neighbors (KNN) -
taking the majority label of the 𝐾 nearest queried points. We set 𝐾

to the square root of the data set size (a common heuristic).

Our experiments test the recovery of the given clustering. For

each algorithm, we query the given clustering, and then evaluate

the output clustering by calculating the fraction of points that are

classified correctly. The clusters in the output clustering are labeled

using the cluster assignments of the queried points. We rerun any

algorithm that uses randomness 10 times and report the average

performance. The experimental results are displayed in Figure 1.

We can see that our algorithm performs significantly better than

the alternative methods. We believe that our algorithm performs

Figure 1: Performance comparison with other semi-
supervised algorithms. The horizontal axis displays the
number of cluster-assignment oracle queries. The vertical
axis displays the clustering accuracy (fraction of points that
are classified correctly).

better because our objective function is well-suited for this clus-

tering problem. Moreover, our algorithm is the only approach that

explicitly handles more realistic semi-supervised learning scenarios

such as noise in the supervision (see Section 3.3) and the supervi-

sion revealing some fixed clustering with a good objective value

rather than the optimal clustering (see Section 3.4).

4.3 Choice of Null Hypothesis
We also consider how the choice of the null hypothesis affects the

accuracy of the output clustering. We compare performance with

scaling the degree-based null hypothesis by a constant 𝜂, as well

as using the average-similarity null hypothesis (see Section 2.1).

We find that settings in the range 1 < 𝜂 ≤ 1.5, which reward

denser clusters of smaller size, improve accuracy (see Figure 2).

On the other hand, setting 𝜂 < 1, which rewards sparser clusters

of larger size, decreases accuracy. We also observe that using the

average-similarity null hypothesis significantly decreases accuracy.

4.4 Comparison with Unsupervised Methods
We also compare the performance of our algorithm with an unsu-

pervised approach that optimizes the same objective function. Our

unsupervised algorithm is a greedy hierarchical clustering. The

hierarchical clustering is computed in a bottom-up fashion using

average linkage. In each iteration the two most similar clusters are

merged. We report the clustering with the largest objective value

over all iterations, and term this algorithm Unsupervised Max-Sum.

This algorithm scales very poorly even to medium-sized data sets,

so we can only run it on a subset of the Newsgroups data. We

sample 6000 data points from the Newsgroup data set uniformly

at random, and term this data set Newsgroup-6000. The sample

contains some points from each newsgroup.

Figure 2: Performance comparison for different choices of
the null hypothesis. The horizontal axis displays the num-
ber of cluster-assignment oracle queries. The vertical axis
displays the clustering accuracy (fraction of points that are
classified correctly).

Figure 3: Performance comparison with unsupervised max-
sumoptimization on theNewsgroups-6000 data set. The hor-
izontal axis displays the number of cluster-assignment ora-
cle queries. The vertical axis displays the normalizedmutual
information (NMI) of the output clustering with respect to
the given clustering.

Figure 3 compares the accuracy of Supervised Max-Sum and

Unsupervised Max-Sum. Here we use normalized mutual information
(NMI) to evaluate clustering accuracy because the unsupervised

algorithm does not label the output clusters. Normalized mutual

information is defined as 2 · 𝐼 (𝑌 ;𝑍)/(𝐻 (𝑌) +𝐻 (𝑍)). Here 𝑌 is the

Figure 4: Performance comparison with unsupervised max-
sumoptimization on theNewsgroups-6000 data set. The hor-
izontal axis displays the number of cluster-assignment ora-
cle queries. The vertical axis displays the objective value of
the output clustering.

random variable specifying the cluster assignments of the points

in the output clustering, and 𝑍 is the random variable specifying

the cluster assignments of the points in the given clustering. 𝐻 (𝑌)
denotes the entropy of 𝑌 , 𝐻 (𝑍) denotes the entropy of 𝑍 , and

𝐼 (𝑌 ;𝑍) denotes the mutual information between 𝑌 and 𝑍 .

We also compare the two algorithms in terms of the objective

value of the output clustering. Figure 4 displays these results. Our

experimental results show that our supervised algorithm is signif-

icantly better than the unsupervised algorithm in terms of both

finding the given clustering (see Figure 3) and optimizing our ob-

jective function (see Figure 4).

5 DISCUSSION
In this work we design an algorithm to optimize the max-sum objec-

tive function in a semi-supervised setting. Our max-sum objective

is a generalization of the well-known modularity objective func-

tion. We prove that our algorithm finds an additive approximation

to the optimal solution in the general case, and a constant-factor

approximation when 𝑂𝑃𝑇 (the value of the optimal solution) is

large. We further study settings where the oracle response is noisy,

and where the supervision reveals some fixed user clustering (with

a good objective value) rather than the optimal clustering. Our

algorithm also generalizes to the min-sum objective function, for

which we can achieve similar performance guarantees. We present

computational experiments to show that our algorithm is effec-

tive in practice - our clustering solutions are more accurate and

have better objective value than the ones output by alternative

semi-supervised and unsupervised methods.

Our work may be extended in several directions. For the max-

sum objective we may further study instances where the number

of clusters in the optimal clustering is not known, and some of

these clusters are small. It would be interesting to design a semi-

supervised clustering algorithm for the noisy same-cluster oracle

(here we only consider the noisy cluster-assignment oracle). Our

analysis for the max-sum objective is most relevant when 𝑂𝑃𝑇

is large. It would be interesting to further study instances where

𝑂𝑃𝑇 is smaller, which would be relevant for data sets like social

networks and other sparse similarity graphs.

REFERENCES
[1] Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. 2017. Approxi-

mate Clustering with Same-Cluster Queries. In ITCS.
[2] Hassan Ashtiani and Shai Ben-David. 2015. Representation Learning for Cluster-

ing: A Statistical Framework. In UAI. 82–91.
[3] Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. 2016. Clustering with

Same-Cluster Queries. In NIPS. 3216–3224.
[4] Pranjal Awasthi, Maria-Florina Balcan, and Konstantin Voevodski. 2014. Local

Algorithms for Interactive Clustering. In ICML. 550–558.
[5] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal

Sinop. 2015. The Hardness of Approximation of Euclidean k-means. In SoCG.
754–767.

[6] Pranjal Awasthi and Reza Bosagh Zadeh. 2010. Supervised Clustering. In NIPS.
91–99.

[7] Maria-Florina Balcan andAvrimBlum. 2008. Clusteringwith Interactive Feedback.

In ALT. 316–328.
[8] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. 2002. Semi-Supervised

Clustering by Seeding. In ICML. 19–26.
[9] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. 2004. Active Semi-

Supervision for Pairwise Constrained Clustering. In SDM. 333–344.

[10] Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. 2004. Integrating Con-

straints and Metric Learning in Semi-supervised Clustering. In ICML. 81–88.
[11] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer,

Zoran Nikoloski, and Dorothea Wagner. 2008. On Modularity Clustering. IEEE
Transactions on Knowledge and Data Engineering 20, 2 (2008), 172–188.

[12] Bhaskar Dasgupta and Devendra Desai. 2013. On the Complexity of Newman’s

Community Finding Approach for Biological and Social Networks. J. Comput.
System Sci. 79, 1 (2013), 50–67.

[13] Sanjoy Dasgupta. 2008. The Hardness of k-means Clustering. Technical Report.
Department of Computer Science and Engineering, University of California, San

Diego.

[14] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon. 2007.

Information-theoretic Metric Learning. In ICML. 209–216.
[15] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[16] Santo Fortunato and Marc Barthelemy. 2007. Resolution Limit in Community

Detection. Proceedings of the National Academy of Sciences 104, 1 (2007).
[17] Ioannis Giotis and Venkatesan Guruswami. 2006. Correlation Clustering with a

Fixed Number of Clusters. In SODA. 1167–1176.
[18] Oded Goldreich, Shafi Goldwasser, and Dana Ron. 1998. Property Testing and its

Connection to Learning and Approximation. J. ACM 45, 4 (1998), 653–750.

[19] Casey S. Greene, Arjun Krishnan, Aaron K. Wong, Emanuela Ricciotti, Rene A.

Zelaya, Daniel S. Himmelstein, Ran Zhang, Boris M. Hartmann, Elana Zaslavsky,

Stuart C. Sealfon, Daniel I. Chasman, Garret A. FitzGerald, Kara Dolinski, Tilo

Grosser, and Olga G. Troyanskaya. 2015. Understanding Multicellular Function

and Disease with Human Tissue-Specific Networks. Nature Genetics 47 (04 2015).
[20] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random

Variables. J. Amer. Statist. Assoc. 58, 301 (1963).
[21] Arya Mazumdar and Barna Saha. 2017. Clustering with Noisy Queries. In NIPS.

5790–5801.

[22] Stefanie Muff, Francesco Rao, and Amedeo Caflisch. 2005. Local Modularity

Measure for Network Clusterizations. Physical Review E 72, 056107 (2005).

[23] Mark E. J. Newman and Michelle Girvan. 2004. Finding and Evaluating Commu-

nity Structure in Networks. Physical Review E 69, 026113 (2004).

[24] Konstantin Voevodski, Maria-Florina Balcan, Heiko Roglin, Shang-Hua Teng, and

Yu Xia. 2012. Active Clustering of Biological Sequences. The Journal of Machine
Learning Research 13 (01 2012).

[25] Bo Wang, Armin Pourshafeie, Marinka Zitnik, Junjie Zhu, Carlos D. Bustamante,

Serafim Batzoglou, and Jure Leskovec. 2018. Network Enhancement as a General

Method to Denoise Weighted Biological Networks. Nature Communications 9 (12
2018).

[26] Etay Ziv, Manuel Middendorf, and Chris Wiggins. 2005. Information-Theoretic

Approach to Network Modularity. Physical Review E 71, 046117 (2005).

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Defining a Null Hypothesis
	2.2 Notation and Definitions

	3 Algorithm
	3.1 General Idea
	3.2 Description and Performance Analysis
	3.3 Noisy Cluster Assignment Oracle
	3.4 Oracle Queries Versus User Queries
	3.5 Min-Sum Objective Function

	4 Experimental Results
	4.1 Hyper-Parameter Settings
	4.2 Comparison with Semi-Supervised Methods
	4.3 Choice of Null Hypothesis
	4.4 Comparison with Unsupervised Methods

	5 Discussion
	References

